期刊文献+

恒流充放电过程中双电层电容器温度特性 被引量:2

Temperature characteristic of electric double layer capacitor under galvanostatic cycling
下载PDF
导出
摘要 温度特性是双电层电容器的重要特性之一,在电容器充放电过程中伴随着可逆热和不可逆热的产生。利用有限元技术对双电层电容器在恒流充放电循环过程中的内部及外部传热进行数值模拟。同时,对一个双电层电容器样品在循环过程中的内部及外部温度变化进行了测量。对数值模拟结果和实验数据进行对比,分析了恒流充放电循环过程中双电层电容器内部和外部的传热特性、温度分布及其发展变化,讨论了循环过程中电容器可逆热的变化规律及其影响因素,以及由可逆热引起的温度波动的变化。另外,实验数据表明,超级电容器在大电流充放电过程中需要进行冷却。 Temperature characteristic is one of the important properties for an electric double layer capacitor(EDLC), and the reversible and irreversible heat are combined with the charging and discharging for an EDLC. In this study, the numerical simulation of heat transfer, conducted with the finite element technology, and temperature measurement inside and outside EDLC were performed during galvanostatic cycling with different current densities. The heat transfer characteristics and temperature distribution were analyzed by the comparison between the simulated and measured temperatures. And then, the variation and the influencing factors of reversible heat and temperature oscillation during galvanostatic cycling were discussed. Meanwhile, the EDLCs need to be cooled during charging and discharging cycles with great current according to the measured results.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第4期1207-1214,共8页 CIESC Journal
基金 国家高技术研究发展计划项目(2011AA11A233)~~
关键词 双电层电容器 温度特性 传热 数值模拟 测量 可逆热 electric double layer capacitor temperature characteristics heat transfer numerical simulation measurement reversible heat
  • 相关文献

参考文献2

二级参考文献16

  • 1严俊,赵立飞.储能技术在分布式发电中的应用[J].安徽电力,2006,23(3):55-57. 被引量:24
  • 2Barrade P, Rufer A, Industrielle L. Supercapacitors as energy buffers: a solution for elevators and for electric busses supply [C]// Power Conversion Conference. Osaka, Japan:[s. n. ],2002: 1160-1165.
  • 3Beale S R, Gerson R, Inc B A, et al. The use of ultracapacitors as the sole power plant in an autonomous, electric rail-guided vehicle[C]// Applied Power Electronics Conference and Exposition. Massachusetts, USA:[s. n.], 2004: 1178-1183.
  • 4Burke A. Review of uhraeapaeitor technologies for vehicle applications[C]// Proceedings of the First Annual Advanced Automotive Battery Conference. Las Vegas, NV, USA: [s. n.], 2001.
  • 5Burke A F, Hardin J E, Dowgiallo E J. Application of ultraeapacitors in electric vehicle propulsion systems [C]// Power Sources Symposium. Cherry Hill, NJ, USA: [s. n.], 1990: 328-333.
  • 6Chami M, Djerdir A, Miraoui A, et al. CHDN to model fuel ceil generator and supercapacitors for electrical vehicle applications[C] // IEEE Conference on Vehicle Power and Propulsion. Chicago, USA: IEEE, 2005.
  • 7Dowgiallo E J, Hardin J E. Perspective on ultracapacitors for electric vehicles[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(8): 26-31.
  • 8Stienecker A W, Stuart T, Ashtiani C. An ultracapacitor circuit for reducing sulfation in lead acid batteries for mild hybrid electric vehicles [J]. Journal of Power Sources, 2006, 156(2): 755- 762.
  • 9Timmermans J M, Zadora P, Cheng Y, et al. Modelling and design of supercapacitors as peak power unit for hybrid electric vehicles[C]// IEEE Conference on Vehicle Power and Propulsion. Chicago, USA: IEEE, 2005.
  • 10Glavin M, Hurley W. Ultracapacitor/battery hybrid for solar energy storage[C]// Universities Power Engineering Conference. Brighton, UK: [s. n. ], 2007.

共引文献12

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部