摘要
为了提高多时相遥感图像变化检测的精确度和运算效率,本文提出了一种基于Contourlet变换和独立分量分析(ICA-Independent component analysis)的变化检测算法.利用Contourlet变换多尺度、多方向性和各向异性等性质,对图像数据进行多尺度分解,再对分解后的数据进行独立分量分析,利用改进的基于牛顿迭代的固定点ICA算法分离出互相独立的数据分量,然后将分离后的数据分量转变成图像分量,最终对变化图像分量经阈值分割实现变化检测.实验结果表明,与现有的基于PCA、基于ICA、基于小波变换与ICA三种变化检测算法相比,本文算法能有效地分离出变化信息,减少了计算的复杂性,得到的变化图像具有更高的精确度,且对背景有较强的稳健性.
In order to improve the accuracy and computational efficiency of change detection of multi-temporal remote sensing images,a change detection algorithm based on contourlet transform and independent component analysis(ICA)is proposed.Firstly,multi-scale decomposition of image data isperformed by using contourlet transform with multi-scale,directionality and anisotropy.Then independent component analysis is carried out for the decomposed data.And the independent data components are separated by the improved fixed point ICA algorithm based on Newton iteration.Next the separated data components are transformed into image components.Finally,change detection is achieved by threshold segmentation and filtering for change image components. The experimental results show that compared with the existing three change detection algorithms such as the algorithm based on PCA,the algorithm based on ICA and the algorithm based on wavelet transform and ICA,the proposed algorithm in this paper can more effectively separate change information and reduce computational complexity.The obtained change image has higher accuracy and good robustness to the background.
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2016年第4期1284-1292,共9页
Chinese Journal of Geophysics
基金
国家自然科学基金项目(61573183)
江苏省大数据分析技术重点实验室开放基金(KXK1403)
城市空间信息工程北京市重点实验室经费项目(2014203)
国土资源部地学空间信息技术重点实验室开放基金(KLGSIT2015-05)
江西省数字国土重点实验室开放研究基金项目(DLLJ201412)
江苏高校优势学科建设工程项目联合资助
关键词
多时相遥感图像
变化检测
CONTOURLET变换
独立分量分析
Multi-temporal remote sensing image
Change detection
Contourlet transform
Independent component analysis(ICA)