期刊文献+

基于块稀疏贝叶斯学习算法的心电数据重构 被引量:1

Electrocardiograph Reconstruction Based on Block Sparse Bayesian Learning Algorithm
下载PDF
导出
摘要 压缩感知(CS)技术在心电信号上的应用具有低成本、低功耗等优势,但传统的CS算法重构心电信号质量并不理想。本文介绍了一种基于信号块结构内相关性的块稀疏贝叶斯学习(BSBL)CS算法;并对MIT-BIH数据库中心电数据进行实验,结果显示其均方根误差远低于传统CS算法,表明该算法能够高质量重构心电信号。BSBL算法在心电数据上的应用有效降低了对数据的采样频率,从而缓解存储压力并降低功耗。 Compressed sensing(CS) has the advantages of low cost and low power consumption in the application of ECG signal, but the quality of the existing algorithm to reconstruct the non-sparse ECG signal is not ideal. This paper introduces an ECG data reconstruction method based on the theory of the compressed sensing. Block spare bayesian learning(BSBL) algorithm combined with intra-block correlation is used to efficiently reconstruct ECG data from MIT-BIH database. The simulation results show that the method can accurately reconstruct ECG signal, compared to traditional CS algorithm with lower root mean square error(RMSE), and reconstruction quality is improved significantly. BSBL algorithm can efficiently reconstruct the non-sparse ECG signal, reducing the use of sensors and power consumption.
出处 《中国医学影像学杂志》 CSCD 北大核心 2016年第3期223-226,共4页 Chinese Journal of Medical Imaging
关键词 信号处理 计算机辅助 压缩感知 算法 块稀疏贝叶斯学习 Signal processing computer-assisted Compressed sensing Algorithms Block sparse bayesian learning
  • 相关文献

参考文献8

  • 1Candes EJ,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 2Mamaghanian H,Khaled N,Atienza D,et al.Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes.IEEE Trans Biomed Eng,2011,58(9):2456-2466.
  • 3Dixon AM,Allstot EG,Gangopadhyay DA.Compressed sensing system considerations for ECG and EMG wireless biosensors.IEEE Trans Biomed Circuits Syst,2012,6(2):156-166.
  • 4Zhang Z,Jung TP,Makeig S,et al.Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware.IEEE Trans Biomed Eng,2013,60(1):221-224.
  • 5Zhang ZL,Rao BD.Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning.IEEE J Sel Top Signal Process,2011,5(5):912-926.
  • 6Zhang Z,Rao BD.Recovery of block sparse signals using the framework of block sparse bayesian learning.IEEE International Conference,2012:3345-3348.
  • 7罗堪,李建清,王志刚,蔡志鹏.心电压缩感知恢复先验块稀疏贝叶斯学习算法[J].仪器仪表学报,2014,35(8):1883-1889. 被引量:7
  • 8尹宏鹏,刘兆栋,柴毅,焦绪国.压缩感知综述[J].控制与决策,2013,28(10):1441-1445. 被引量:48

二级参考文献69

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Marple S L. Digital spectral analysis with applications[M]. Englewood Cliffs: Prentice-Hall, 1987: 35-101.
  • 3Candbs E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 4Donoho D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 5Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 6Candbs E. Compressive sampling[C]. Proc of the Int Congress of Mathematicians. Madrid, 2006, 3: 1433-1452.
  • 7Cands E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics, 2006, 6(2): 227-254.
  • 8Cands E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 9Waheed Bajwa, Jarvis Haupt, Akbar Sayeed. Compressive wireless sensing[C]. Proc of the 5th Int Conf on Information Processing in Sensor Networks. New York: Nashville, 2006: 134-142.
  • 10Duarte M F, Davenport M A, Takhar D, et al. Single- pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

共引文献53

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部