期刊文献+

UUV推进电机在线参数辨识自适应控制方法研究 被引量:6

Research on online parameter identification and adaptive control of UUV propulsion motor
下载PDF
导出
摘要 针对水下无人航行器(UUV)的推进电机矢量控制系统中电流控制器性能因参数变化而下降的问题,提出一种基于智能在线参数辨识的电流环自适应控制方法。以离散型永磁同步推进电机动态模型作为被控对象,采用动态惯性权重粒子群算法对永磁同步推进电机的定子电阻和dq轴电感进行在线辨识,根据电流控制器工程设计方法,将辨识所得的电机参数实时用于计算电流控制器的PI值,实现电流环的自适应控制。最后,通过仿真实验验证所提方法的有效性,结果表明该方法可以有效地克服水下快速洋流对推进电机的负载扰动,进而实现永磁同步推进电机的快速、高精确度电流控制性能。 In vector control system of unmanned underwater vehicle( UUV) propulsion motor,due to the changes in motor parameters,current controller performance will decline. An adaptive control of permanent magnet synchronous propulsion motor current-loop based on online parameter identification is proposed.The stator resistance and dq axis inductance of the discrete dynamic of permanent magnet synchronous propulsion motor are identified by using the dynamic inertia weight particle swarm optimization,and then by the engineering procedures of the current controller,the identified motor parameters are utilized to dynamically calculate the PI value of current controller to achieve the adaptive control of current loop. Finally,the effectiveness of the proposed scheme is verified by the simulation experiments,and it follows from the results that the proposed scheme can effectively overcome the load disturbance caused by fast ocean currents such that the rapid and high precision current control performance of permanent magnet synchronous propulsion motor is achieved.
出处 《电机与控制学报》 EI CSCD 北大核心 2016年第4期34-40,共7页 Electric Machines and Control
基金 国家自然科学基金(51479018) 中央高校基本科研业务费专项资金(313201432)
关键词 水下无人航行器 永磁同步推进电机 矢量控制 粒子群算法 参数辨识 自适应控制 UUV permanent magnet synchronous propulsion motor vector control particle swarm optimization parameter identification adaptive control
  • 相关文献

参考文献4

二级参考文献35

  • 1王聘,李宏,袁林兴,陈映辉.基于DSP的直流电机弱磁调速系统设计[J].微电机,2006,39(6):59-62. 被引量:1
  • 2李翠萍,王新生,张华强.基于MATLAB的空间矢量PWM仿真研究[J].机床与液压,2007,35(7):219-221. 被引量:11
  • 3Moreau S, Kahoul R, Louits J. Parameters estimation of permanent magnet synchronous machine without adding extra-signal as input excitation[J]. IEEE Trans on Industry Applications, 2004, 36(4): 371-376.
  • 4Khwaja M, Silva H. Identification of machine parameters of a synchronous motor[J]. IEEE Trans. on Industry Applications, 2005, 41(2): 557-565.
  • 5Babak N, Farid M, Francois M. Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities[J]. IEEE Trans. on Industry Applications, 2007, 43(2): 485-494.
  • 6Stumberger B, Stumberger G, Hamler A. Evaluation of saturation and cross-magnetization interior permanent-magnet synchronous effects in motor[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1264-1271.
  • 7Abdelhad B, Kaiyu W, Leon M. Identification of induction machine parameters using a new adaptive genetic algorithm[J]. Electric Power Components and Systems, 2004, 32: 767-784.
  • 8Rahimpour E, Bellini A, Cava L. Parameter identification of deep-bar induction motors using genetic algorithm[J]. Electrical Engineering, 2007, 89: 547-552.
  • 9Dupuis A, Ghribi M, Kaddouri A. Multiobjective genetic estimation of DC motor parameters and load torque[C]. IEEE International Conference on Industrial Technology (ICiT), 2004:1511-1514.
  • 10Lankarany M, Rezazade A.Parameter estimation optimizization based on gentic algorithm[J]. IEEE Trans. on Industry Applications, 2006, 36(6): 365-370.

共引文献51

同被引文献37

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部