期刊文献+

气液分离双压有机朗肯循环系统的热力学分析及优化 被引量:3

Thermodynamic Analysis and Optimization in Doublepressure Organic Rankine Cycle with a Gas-liquid Separator
原文传递
导出
摘要 综合非共沸工质和汽液分离技术的优势,提出一种非共沸工质的DSORC(有机朗肯循环)汽液分离双压流程系统,并建立非共沸工质DSORC的参数优化模型,优化变量为蒸发温度、混合工质浓度和汽液分离干度,目标函数为热力学第二定律效率最大;采用遗传算法求解建立的参数优化模型;通过案例分析得到了最优运行参数并与其它形式ORC进行了比较。结果表明:非共沸工质DSORC的第二定律效率比非共沸工质基本ORC(BORC)提高14.1%~17.2%,相比纯工质DSORC第二定律效率提高5.3%-8.7%;DSORC的第二定律热效率随热源的入口温度提高成线性增长。 Double-pressure organic Rankine cycle with a gas-liquid separator( DSORC) is proposed. Parametric optimization of DSORC used binary zeotropic mixtures,basic organic Rankine cycle( BORC) used zeotropic mixtures and DSORC used pure fluids is conducted. The second law efficiency maximization is used as objective function. The optimization variables are mixing ratios of zeotropic mixtures,evaporating temperature and vapor quality in separator.And the optimization model is solved using genetic algorithm. The working fluids under study are: R245 fa,isopentane,hexane,cyclohexane,isohexane,pentane,isobutane,R365 mfc and their binary mixture. The results show that DSORC used zeotropic mixtures has an increase of 14. 1 ~ 17. 2% in second law efficiency compared to BORC used zeotropic mixtures,and an increase of 5. 3 ~ 8. 7% compared to DSORC with pure fluids. The efficiency differences among 8 zeotropic mixtures are less than 3%. The second law efficiency increases linearly with the inlet temperature of heat source.
出处 《热能动力工程》 CAS CSCD 北大核心 2016年第4期24-30,141-142,共7页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金项目(51476037) 广州市珠江科技新星项目(2013J2200096) 广州科技计划(13ZK0204)
关键词 有机朗肯循环 气液分离 非共沸混合工质 热力学 遗传算法 优化 organic Rankine cycle gas-liquid separator binary mixture thermodynamics genetic algorithm optimization
  • 相关文献

参考文献12

  • 1Chen H, Goswami D Y, Stdanakos E K. A review of thermodynam- ic cycles and working fluids for the conversion of low-grade heat J ]. Renewable and Sustainable Energy Reviews,2010,14 ( 9 ) : 3059 - 3067.
  • 2Stijepovic M Z,Linke P, Papadopoulos A I,et al. On the role of working fluid properties in organic Rankine cycle performance[ J].Applied Thermal Engineering,2012,36 : 406 - 413.
  • 3Xi H, Li M, Xu C, et al. Parametric optimization of regenerative or- $anic rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm [ J ]. Energy,2013,58 (9) :473 - 482.
  • 4Kheiri A, Feidt M, Pelloux-Prayer S. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid[J]. Energy,2014,78 : 622 -638.
  • 5Guzovic Z, Ratkovic P,Blataric Z. The comparision of a basic and a dual-pressure OBC ( Organic Pamkine Cycle) : Geothermal Power Plant VelikaCigiena case study[J]. Energy,2014,76 : 175 - 186.
  • 6Balk Y, Kim M, Chan$ K, et al. A comparative study of power opti- mization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Ranklnecycles[ J]. Renewable Energy,2013,54(6) :78 -84.
  • 7Dong B,Xu G,Cal Y,et el. Analysis of zeotropic mixtures used in high-temperature organic rankine cycle [J]. Energy Conversion and Management,2014,84 : 253 - 260.
  • 8Wang J L, Zhao L, Wang X D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankinecyclc [ J ]. Ap- plied Energy,2010,87(11) : 3366-3373.
  • 9Lecompto S, Ameel B ,Ziviani D, et al. Exergy analysis of zeotropic mixtures as working fluids in crganlcrankine cycles [J]. Energy Conversion and Manasement,2014.
  • 10Chen Y, Hua N, Deng L S. Performances of a split-type air condi- tioner employing a condenser with liquid - vapor separation baf- fles [ J ]. international journal of refrigeration, 2012,35 ( 2 ) : 278 - 289.

同被引文献5

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部