期刊文献+

基于深度自动编码器与Q学习的移动机器人路径规划方法 被引量:14

Mobile Robot Path Planning Based on Deep Auto-encoder and Q-learning
下载PDF
导出
摘要 针对移动机器人在静态未知环境中的路径规划问题,提出了一种将深度自动编码器(deep auto-encoder)与Q学习算法相结合的路径规划方法,即DAE-Q路径规划方法.利用深度自动编码器处理原始图像数据可得到移动机器人所处环境的特征信息;Q学习算法根据环境信息选择机器人要执行的动作,机器人移动到新的位置,改变其所处环境.机器人通过与环境的交互,实现自主学习.深度自动编码器与Q学习算法相结合,使系统可以处理原始图像数据并自主提取图像特征,提高了系统的自主性;同时,采用改进后的Q学习算法提高了系统收敛速度,缩短了学习时间.仿真实验验证了此方法的有效性. To solve the path planning problem of mobile robot in static unknown environment, a new pathplanning method was proposed which combined the deep autoencoder with the Qlearning algorithm,namely the DAEQ path planning method. The deep autoencoder processed the raw image data to get thefeature information of the environment. The Qlearning algorithm chose an action according to theenvironmental information and the robot moved to a new position, changing the surrounding environmentof the mobile robot. The robot realized autonomous learning through the interaction with the environment.The system processed raw image data and extracted the image feature autonomously by combining thedeep autoencoder and the Qlearning algorithm, and the autonomy of the system was improved. Inaddition, an improved Qlearning algorithm to improve the system爷s convergence speed and shorten thelearning time was utilized. Experimental evaluation validates the effectiveness of the method.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2016年第5期668-673,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61573029)
关键词 移动机器人 路径规划 深度自动编码器 Q学习算法 mobile robot path planning deep autoencoder Qlearning algorithm
  • 相关文献

参考文献10

  • 1朱大奇,颜明重.移动机器人路径规划技术综述[J].控制与决策,2010,25(7):961-967. 被引量:328
  • 2BEOM H R, CHO H S. A sensor-based navigation for amobile robot using fuzzy logic and reinforcement learning[J]. IEEE Trans on System, Man and Cybernetics, 1995,25(3): 464-477.
  • 3DEISENROTH M P, FOX D, RASMUSSEN C E.Gaussian processes for data-efficient learning in roboticsand control[J]. IEEE Transactions on Pattern Analysis &Machine Intelligence, 2015, 37(2): 408-423.
  • 4MAEDA Y, WATANABE T, MORIYAMA Y. View-basedprogramming with reinforcement learning for roboticmanipulation[C]//2011 IEEE International Symposium onAssembly and Manufacturing (ISAM). Piscataway, NY:IEEE, 2011: 1-6.
  • 5LANGE S, RIEDMILLER M, VOIGTLANDER A.Autonomous reinforcement learning on raw visual input datain a real world application[C] //The 2012 InternationalJoint Conference on Neural Networks ( IJCNN ).Piscataway, NY: IEEE, 2012: 1-8.
  • 6LANGE S, RIEDMILLER M. Deep auto-encoder neuralnetworks in reinforcement learning [C] //The 2010International Joint Conference on Neural Networks(IJCNN). Piscataway, NY: IEEE, 2010: 1-8.
  • 7LIU H L, TANIGUCHI T. Feature extraction and patternrecognition for human motion by a deep sparse autoencoder[C] //2014 IEEE International Conference on Computerand Information Technology ( CIT). Piscataway, NY:IEEE, 2014: 173-181.
  • 8陈宗海,杨志华,王海波,盛捷.从知识的表达和运用综述强化学习研究[J].控制与决策,2008,23(9):961-968. 被引量:14
  • 9MAEDA Y, ABURATA R. Teaching and reinforcementlearning of robotic view-based manipulation[C] //IEEERO-MAN 2013. Piscataway, NY: IEEE, 2013: 87-92.
  • 10GOYAL J K, NAGLA K S. A new approach of pathplanning for mobile robots [C] //2014 InternationalConference on Advances in Computing, Communicationsand Informatics ( ICACCI). Piscataway, NY: IEEE,2014: 863-867.

二级参考文献105

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2陈宗海,文锋.基于复杂过程简化模型的DHP学习控制[J].控制与决策,2006,21(10):1087-1091. 被引量:2
  • 3Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 4Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 5Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 6Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 7De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 8Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 9Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.
  • 10Fujimura K, Samet H. A hierarchical strategy for path planning among moving obstacles[J]. IEEE Trans on Robotic Automation, 1989, 5(1): 61-69.

共引文献340

同被引文献168

引证文献14

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部