期刊文献+

基于弹流理论的深槽密封机制分析 被引量:1

Elastohydrodynamic Analysis on Mechanical Seals with Deep Groove
下载PDF
导出
摘要 使用半光滑牛顿法建立深槽密封弹流模型,模型将雷诺方程、空化方程、力平衡方程及变形方程同时纳入牛顿迭代系统,使用Fischer-Burmeister函数实现对润滑液膜空化区域的识别,通过一重循环迭代寻索到空化区域并得到端面膜厚及压力场分布,算法效率显著提升。通过该弹流模型对深槽密封作用机制进行研究,并对比分析U型槽、矩形槽、圆弧槽3种型槽对密封性能的影响。结果表明:深槽密封端面周向较小的动力楔使得端面以非接触状态运行;核主泵三级密封的密封特性接近,圆弧槽在仅考虑压力变形条件下动压效应微弱,且稳定运行时其最小膜厚远小于U型槽及矩形槽。 A semi-smooth Newton iterative algorithm was presented to analyze the deep groove mechanical seal with elastohydrodynamic( EHD) theory. The iteration system included Reynolds equation,cavitation equation,force balancing equation and deformation equation. With the cavitation area of lubricant film distinguished by Fischer-Burmeister function,the EHD solution of the mechanical seal was solved by only one Newton iteration loop to find the cavitation area and to acquire the film thickness of end face and distribution of pressure. This algorithm is proved to be high efficient. The mechanism of deep groove mechanical seal was researched by this EHD model,and the impact of three different groove shapes as U,rectangle and arc grooves on the seal property was analyzed. The results show that a tiny circumferential dynamic wedge on the seal face helps the deep groove mechanical seal working in a non-contacting condition. The three stages of the nuclear pump mechanical seal show similar sealing property. The circular groove shows weak dynamic effect if considering mechanical deformation alone. The minimum film thickness of the circular groove is far less than that of U and rectangle grooves while running stably.
出处 《润滑与密封》 CAS CSCD 北大核心 2016年第4期61-66,共6页 Lubrication Engineering
基金 国家重点基础研究发展计划项目(973)(2014CB046404) 国家自然科学基金项目(51375449) 浙江省自然科学基金项目(Y14E0500061)
关键词 深槽密封 半光滑牛顿法 弹流理论 动压效应 deep groove mechanical seal semi-smooth Newton method elastohydrodynamic theory dynamic effect
  • 相关文献

参考文献13

  • 1MAYER E.Performance of rotating high duty nuclear seals[J].Lubrication Engineering,1989,45(5):275-286.
  • 2KEY W E,SALANT R F,PAYVAR P,et al.Analysis of a me.chanical seal with deep hydropads[J].STLE Tribology Transac.tions,1989,32(4):481-489.
  • 3FUSE T,SHIMIZU T,ISIIIYAMA K N.Development of high re.liable mechanical seal for nuclear power plant[C] / / Proceed.ings of International Conference on Fluid Sealing,2003:405-419.
  • 4FATU A,HAJJAM M,BONNEAU D. Numerical modeling ofthermohydrodynamic mechanical face seals[J].STLE TribologyTransactions,2010,53(3):414-425.
  • 5王小燕,孟祥铠,刘鑫,盛颂恩,彭旭东.核主泵用流体动压型机械密封耦合模型与性能分析[J].摩擦学学报,2013,33(2):169-176. 被引量:21
  • 6AURELIAN F,MOHAMED H,DOMINIQUE B.A new model ofthermohydrodynamic lubrication in dynamically loaded journalbearings[J].ASME Journal of Tribology,2006,128(1):58-91.
  • 7BYUNG J K,KYUNG W K.Thermo.elastohydrodynamic analysisof connecting rod bearing in internal combustion engine[J].ASME Journal of Tribology,2001,123(3):444-454.
  • 8张永平,童小娇,吴复立,严正,倪以信,陈寿孙.基于非线性互补问题函数的半光滑牛顿最优潮流算法[J].中国电机工程学报,2004,24(9):130-135. 被引量:35
  • 9JOHANSSON L,WETTERGREN H.Computation of the pressuredistribution in hydrodynamic bearings using Newton's method[J].Journal of Tribology,2004,126(2):404-407.
  • 10LENGIEWICZ J,WICHROWSKI M,STUPKIEWICZ S.Mixedformulation and finite element treatment of the mass.conser.ving cavitation model[J]. Tribology International,2014,72:143-155.

二级参考文献37

  • 1彭旭东,杜东波,李纪云.不同型面微孔对激光加工多孔端面机械密封性能的影响[J].摩擦学学报,2006,26(4):367-371. 被引量:107
  • 2[2]Wang X,Song Y H,Lu Q.A coordinated real-time optimal dispatch method for unbundled electricity markets[J].IEEE Trans on Power Systems.2002,17 (2):482-490
  • 3[4]Sun D I,Ashley B,Brewer B,et al.Optimal power flow by Newton approach [J].IEEE Trans On PAS,1984,103 (10):2864-2880.
  • 4[5]Maria G A,Findlay J A.A Newton optimal power flow program for Ontario hydro EMS [J].IEEE Trans on Power Systems,1987,2 (3):576-584.
  • 5[6]Chang S K,Marks G E,Kato K.Optimal real-time voltage control [J].IEEE Trans on Power Systems,1990,5 (3):750-758.
  • 6[8]Torres G L,Quintana V H,Optimal power flow by a nonlinear complementarity method [J].IEEE Trans on Power Systems,2000,15 (3):1028-1033.
  • 7[9]Conejo A J,Nogales F J,Frieto F J.A decomposition procedure based on approximate Newton direction [J].Math.Program.2002,93:495-515.
  • 8[10]Harker P T,Pang J S.Finite-dimensional variational inequality and noniinear complementarity problems:Asurvey of theory,algorithms and applications [J].Mathematical Programming,1990,48:161-220.
  • 9[11]Fisher A.An NCP-function and its use for the solution of complementarity problems [C].in:Du D.Z.,Qi L and Wormersley R.S.,eds,Recent Advances in Nonsmooth Optimization (World Scientific,Singapore,1995:88-105.
  • 10[12]Facchinei F,Pang J S.Finite-dimensional variational inequalities and complementarity problems [M].New York,Berlin,Springer,2003.

共引文献73

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部