期刊文献+

水声网络动态编码协作通信频率选择与中继节点位置选择

Frequency selection and relay placement for dynamic code cooperative communication in underwater acoustic networks
下载PDF
导出
摘要 以含直达路径的典型3点中继动态编码协作水声通信系统为例,研究了如何选择最优工作频率与中继节点的位置,以使系统的功耗最小、性能最优的方法。首先给出在一定通信距离情况下的最优工作频率模型,根据得到的最优工作频率来改变中继节点位置,继而得到中继节点的最佳位置。以此为基础,建立通信网络的能量消耗模型,通过最优频率-距离关系近似表达式进行能量消耗的优化,综合工作频率与中继节点位置进行选择。从理论上证明了当中继节点与信源节点和目的节点的距离相等时,工作频率选择该距离条件下的最优工作频率可使系统的功耗最小。计算机仿真实验验证了该理论的正确性。 Three nodes-relay cooperative communication systems,including a direct path,are selected to study the problems of choosing the proper frequency and node locations for minimizing energy consumption.The approximate models for this frequency are proposed,when the link lengths are known exactly.The relay placement is investigated in a three nodes-relay cooperative communication system with the optimal frequency.An energy consumption model is established for the networks,and the energy consumption is minimized by the optimal frequency-distance relationship approximate expression.The relay placement and the frequency are optimized for the cooperative underwater acoustic network.We demonstrate that utilizing different frequencies has an impact on the optimal relay placement,and the optimal relay placement is equidistant on the line.The simulation results verified the effectiveness of the proposed model.
出处 《中国科技论文》 CAS 北大核心 2016年第2期120-124,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20130121120033) 国家自然科学基金资助项目(41476026 41376040) 中央高校基本科研业务费专项资金/厦门大学基础创新科研基金资助项目(20720140506)
关键词 水声通信 协作通信 能量优化 频率选择 位置选择 underwater acoustic communications cooperative communications energy efficiency frequency selection relay placement
  • 相关文献

参考文献1

二级参考文献14

  • 1Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent digital communications for underwater acoustic channels [J].IEEE Journal of Oceanic Engineering, 1994, 19(1) : 100 - 111.
  • 2Sayeed A, Aazhang B. Joint multipath-Doppler diversity in mobile wireless communications [J].IEEE Trans. on Communication, 1999, 47(1) :123 - 132.
  • 3Li B, Zhou S, Stojanovic M, et al. Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts[J].IEEE Journal of Oceanic Engineering, 2008, 4(33) : 198 - 209.
  • 4Qu F, Yang L. Basis expansion model for underwater acoustic channels[C]//Proc, of MTS / IEEE Oceans Conference, 2008. 1-7.
  • 5Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans. on Information Theory, 2006, 52(2) : 489 - 509.
  • 6Donoho D. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4) : 1289 - 1306.
  • 7Bajwa W U, Sayeed A M, Nowak R. Learning sparse doublyselective channels[C]//Proc, of 46th Annual Allerton Conference on Communication, Control, and Computing 2008 : 538 - 545.
  • 8Bajwa W U, Haupt J, Raz G. Compressed channel sensing[C]// Proc. of 42nd Annual Conference Information Sciences and Systems, 2008:5 - 10.
  • 9Liu K, Kadous T, Sayeed A. Orthogonal time-frequency signaling over doubly dispersive channels[J].IEEE Trans. on Information Theory, 2004, 50(11) : 2583 - 2603.
  • 10Bello P. Characterization of randomly time-variant linear channels[J]. IEEE Trans. on Communication, 1963,14(12) 360 - 393.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部