期刊文献+

一种改进的重启动随机游走立体匹配算法 被引量:1

An improved random walking with restart stereo matching algorithm
下载PDF
导出
摘要 通过分析概率模型下重启动随机游走立体匹配算法的边缘权重仅由颜色相似性确定以及邻接矩阵不均衡的问题,对其提出了一种改进算法。首先对边缘权重进行改进,采用颜色相似性和空间邻近度共同确定,使算法在边缘区域和弱纹理区域的匹配更加精确;然后对邻接矩阵做均衡化处理,使算法对几何畸变干扰和异常值都具有很好的鲁棒性。测试结果显示,改进的算法在深度不连续区域和弱纹理区能获得更为精确的视差图。 After analysis of the problems of the random walking with restart stereo matching algorithm based on probability model that the edge weights were only decided by color similarity and the adjacency matrix was not balanced,an improved algorithm of stereo matching is proposed.First,the edge weights are changed to improve the accuracy of edge area and low textured surface marching,by introducing both of color similarity and space proximity.Then,a balance method for adjacency matrix is presented,which is robust to outliers and geometric deformation.The experiments show that the new method improves the matching performance in the disparity discontinuity areas and the low textured surfaces,and the more accurate disparity map can be obtained.
作者 郭三君 万敏
出处 《中国科技论文》 CAS 北大核心 2016年第2期241-244,共4页 China Sciencepaper
基金 四川省科技计划重大项目(2015SZ0010)
关键词 概率模型 重启动随机游走(RWR) 边缘权重 邻接矩阵 probabilistic model random walks with restart(RWR) edge weights adjacency matrix
  • 相关文献

参考文献1

二级参考文献11

  • 1Do C M, Javidi B. 3D integral imaging reconstruction of occluded objects using independent component analysis-based k-means clustering [J]. Journal of Display Technology(S 1551-319X), 2010, 6(7): 257-262.
  • 2Leordeanu M. Spectral matching, learning, and inference for computer vision [D]. USA: Robotics institute, Carnegie Mellon University, 2009.
  • 3Kim T H, Lee K M, Lee S U. A probabilistic model for correspondence problems using random walks with restart [J]. Lecture Notesin Computer Science(S0302-9743), 2010, 5996: 416-425.
  • 4Cour T, Srinivasan P, Shi J. Balanced graph matching [C]//Proc of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December4-9, 2006: 311-320.
  • 5Tong H H, Faloutsos C, Pan J Y. Random walk with restart: fast solutions and applications[J]. Knowledge and Information Systems(S0219-1377), 2008, 14(3): 327-346.
  • 6Lowe D Ct Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110.
  • 7Kannala J, Rahtu E, Brandt S S, et al. Object recognition and segmentation by non-Rigid quasi-dense matching[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AlasKa, June 24-26, 2008: 1-8.
  • 8Microsoft Corporation. Microsoft Research Cambridge Object Recognition Image Database [DB/OL]. 2011. http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91 b301/default.aspx.
  • 9Nail S K, Murthy C A. Distinct multicolored region descriptors for object recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2007, 29(7): 1291-1296.
  • 10Chen J, Tian J, Lee N, et al. A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering(S0018-9294), 2010, 57(7): 1707-1718.

共引文献3

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部