期刊文献+

反馈式量子点光电制冷机的优化性能分析

Optimal performance analysis of the feedback quantum dots photoelectric refrigerator
下载PDF
导出
摘要 利用麦克斯韦妖装置构建了一种反馈式量子点光电制冷机。在弱耦合以及序贯隧穿近似下,基于主方程的方法推导出稳态下制冷机的制冷率、制冷系数等重要参数的表达式。使用品质因子作为优化目标函数,获得了最大品质因子下制冷率和制冷系数。重点对反馈式量子点光电制冷机优化性能进行研究,特别强调正负反馈的概念,发现在任意的反馈下最大品质因子优化下的光电制冷机制冷系数始终大于CA制冷系数。负反馈抑制低温热源的热流进入制冷机,却可以提高制冷机的制冷系数,但制冷率逐渐减少。在正反馈情形下,当反馈系数达到某一个值时,获得了较高的制冷系数和最大的制冷率,找到了最大品质因子下制冷机最优工作状态。 Based on Maxwell's demon device,a feedback quantum dots photoelectric refrigerator was proposed. In the weak coupling and sequential tunneling approximation,the expressions for the important parameters,such as the coefficient of performance and the cooling rate at steady state,were derived under the help of master equation. The cooling rate and the coefficient of performance at maximum figure of merit were obtained by using the figure of merit as the optimization objective function. This article focused on the optimal performance of the feedback quantum dots photoelectric refrigerator. It was found that the coefficient of performance at maximum figure of merit was always larger than CA coefficient of performance in any feedback. The negative feedback restrained the heat flux of the low temperature heat reservoir to flow into the refrigerator and can improved the coefficient of performance,but the cooling rate gradually decreased. In the positive feedback,the higher coefficient of performance and the maximum cooling rate were obtained when the positive feedback reached some value. Meantime,the optimal working regime of the refrigerator was found at maximum figure of merit.
出处 《南昌大学学报(工科版)》 CAS 2016年第1期93-97,102,共6页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(11365015)
关键词 反馈 量子点 光电制冷机 优化分析 feedback quantum dots photoelectric refrigerator optimization analysis
  • 相关文献

参考文献4

二级参考文献86

  • 1Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801
  • 2Nolas G S and Goldsmid H J 1999 J. Appl. Phys. 85 4066
  • 3Hishinuma Y, Geballe T H and Moyzhes B Y 2001 Appl. Phys. Lett. T8 2572
  • 4Ulrich M D, Barnes P A and Vining C B 2001 J. Appl. Phys. 90 1625
  • 5Xuan X C 2002 J. Appl. Phys. 92 4746
  • 6Harman T C 2002 Science 297 2229
  • 7Hishinuma Y, Geballe T H, Moyzhes B Y and Kenny T W 2003 J. Appl. Phys. 94 4690
  • 8Vashaee D and Shakouri A 2004 J. Appl. Phys. 95 1233
  • 9Vashaee D and Shakouri A 2004 Phys. Rev. Lett. 92 106103
  • 10O'Dwyer M F, Lewis R A and Zhang C 2005 Phys. Rev. B 72 205330

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部