期刊文献+

玉米Δ1-吡咯啉-5-羧酸合成酶基因家族生物信息学分析 被引量:2

Bioinformatics Analysis of Delta-1-Pyrroline-5-Carboxylate Synthase Gene Family in Maize
原文传递
导出
摘要 Δ1-吡咯啉-5-羧酸合成酶(Delta-1-pyrroline-5-carboxylate synthase,P5CS)是脯氨酸代谢途径的关键酶,对植物抵抗逆境胁迫起至关重要的作用。为了探索P5CS在玉米对逆境胁迫的响应,本文对5个玉米P5CS基因家族蛋白的基本理化性质、二级结构预测、亚细胞定位、基因结构、进化关系及保守基序等方面进行初步生物信息分析。结果显示,5个玉米P5CS蛋白中有3个偏酸性,1个显中性,1个偏碱性;2个以无规则卷曲为主要构成元件,3个P5CS蛋白主要以α白螺旋为主要构成元件;不稳定指数分析发现,4个P5CS蛋白为稳定蛋白;疏水性分析表明,所有的P5CS蛋白为亲水性蛋白;玉米P5CS家族内含子最少含有4个内含子,最多的含有19个内含子;亚细胞定位分析表明,P5CS均蛋白定位于细胞基质;进化分析表明,P5CS家族分3个亚家族。 Delta-1-pyrroline-5-carboxylate synthase is a restriction enzyme in proline biosynthesis, and playan important role in responses to biotic and abiotic stresses in plants. In order to study the function of P5 CS genes inmaize stress response, the physicochemical property, secondary structure, subcellular location, gene structure, evolu-tionary relationship and conserved motif of maize P5 CS genes family were analyzed by the bioinformatics methods.The results showed that there were 3 acidic alkalinity proteins, one neuter protein and one alkalinity protein in theP5 CS family. The secondary structure of two of P5 CS proteins was random coil, three of them were alpha helix. Insta-bility index analysis found that 4 of the P5 CS protein is stabilize protein, hydrophobic analysis showed that all of theP5 CS protein were hydrophilic protein,maize P5 CS family contains at least four intron, the most one P5 CS contains19 intron,subcellular localization analysis showed that all of P5 CS protein localization in cytoplasm, evolution analy-sis indicated that P5 CS family class into three subfamily.
出处 《玉米科学》 CAS CSCD 北大核心 2016年第2期40-46,共7页 Journal of Maize Sciences
基金 中央级公益性科研院所基本科研业务专项(1630062014010 1630062015017 1630062015003) 海南省自然科学基金(20153134)
关键词 玉米 Δ1-吡咯啉-5-羧酸合成酶(P5CS) 生物信息 基因家族 Maize Delta-1-pyrroline-5-carboxylate synthase(P5CS) Bioinformatic Gene family
  • 相关文献

参考文献26

  • 1Kishor P K, Sangam S, Amrutha R N, et al. Regulation of proline bio-synthesis, degradation, uptake and transport in higher plants: its im-plications in plant growth and abiotic stress tolerance[J]. Curr. Sci.,2005, 88(3):424-438.
  • 2Delauney A J, Verma DPS. Proline biosynthesis and osmoregula-tion in plantsfj]. The Plant Journal, 1993, 4(2): 215-223.
  • 3Zhang C,Lu Q, Verma DPS. Removal of feedback inhibition of Al-pyrroline- 5- carboxylate synthetase, a bifunctional enzyme catalyz-ing the first two steps of proline biosynthesis in plants[J]. Journal ofBiological Chemistry, 1995, 270(35): 20491-20496.
  • 4Zhu B, Su J, Chang M,et al. Overexpression of a A 1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water— andsalt-stress in transgenic rice[J]. Plant Science, 1998,139(1): 41-48.
  • 5Chen J, Wang S, Jing R,et al. Cloning the PvP5CS gene from com-mon bean(Phaseolus vulgaris) and its expression patterns under abi-otic stresses[J]. Journal of Plant Physiology, 2009, 166(1): 12-19.
  • 6Hu C A, Delauney A J, Verma D P. A bifunctional enzyme(delta 1-pyrroline- 5- carboxylate synthetase) catalyzes the first two steps inproline biosynthesis in plants.[J]. Proceedings of the National Acade-my of Sciences, 1992, 89(19): 9354-9358.
  • 7Hong Z, Lakkineni K,Zhang Z, et al. Removal of feedback inhibi-tion of A1 - pyrroline- 5- carboxylate synthetase results in increasedproline accumulation and protection of plants from osmotic stress[J].Plant Physiology, 2000, 122(4): 1129-1136.
  • 8Savour6 A, Jaoua S, Hua X, et al. Isolation, characterization, andchromosomal location of a gene encoding the A 1-pyrroline-5-car-boxylate synthetase in Arabidopsis thaliana[J]. FEBS Letters,1995,372(1): 13-19.
  • 9Strizhov N, Abraham E,okr^sz L, et al. Differential expression oftwo P5CS genes controlling proline accumulation during salt-stressrequires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabi-dopsis[S]. The Plant Journal, 1997, 12(3): 557-569.
  • 10Yoshiba Y,Kiyosue T, Katagiri T,et al. Correlation between the in-duction of a gene for A1 - pyrroline- 5- carboxylate synthetase andthe accumulation of proline in Arabidopsis thaliana under osmoticstress[J]. The Plant Journal, 1995,7(5): 751-760.

二级参考文献29

  • 1Bouwmeestera H J, Wallaartb T E, Janssena M H A, et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis[J]. Phytochemistry, 1999,52:843.
  • 2Bertea C M, Freije J R, Woude H, et al. Identification of intermediates and enzymes invoved in the early steps of artemisinin biosynthesis in Artemisia annua[J]. Planta Med, 2005,71:40.
  • 3Teoh K H, Polichuk D R, Reed D W, et al. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome 17450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [ J ]. FEBS Lett, 2006,580 (5) : 1411.
  • 4Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [ J ]. Nature, 2006,440:940.
  • 5Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues [ J ]. Anal Biochem, 1987,163 : 16.
  • 6Paquette S M, Bak S, Feyereisen R. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana [ J ]. DNA Cell Biol, 2000,19 ( 5 ) : 307.
  • 7Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherich coli for production of terpenoids [ J ]. Nat Biotechnol, 2003,21:796.
  • 8Newman J D, Marshall J, Chang M, et al. High-level production amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli [ J ]. Biotechnol Bioeng, 2006,95 (4) :684.
  • 9孙微,张辉.河南和山西野生大豆耐盐鉴定及耐盐相关基因分析[D].北京:中国农业科学院,2007.
  • 10AkpJnar B A, Lucas S J, Budak H. Genomics approaches for crop improvement against abiotic stress [ J ]. Scientific World Journal, 2013 ,doi./10. 1155/2013/361921.

共引文献16

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部