期刊文献+

浙江省2013年麻疹疫情时空分布特征 被引量:4

Spatial-temporal distribution feature of measles in Zhejiang province, 2013
原文传递
导出
摘要 目的 探讨浙江省麻疹疫情的时空演变规律。方法 数据来源于中国疾病预防控制信息系统和中国免疫规划信息管理系统,采用Power-law的时空多成分模型拟合浙江省各县(市、区)2013年麻疹逐日发病个案数据,通过时间自相关、局部特性、空间流行等成分值比较各县(市、区)麻疹的流行特征。结果 浙江省2013年麻疹报告总例数为1494例,发病率为2.72/10万;Power-law算法相比一阶确定性邻近矩阵,模型拟合后的赤池信息量准则更低;麻疹疫情后续传播影响较大的区域主要是柯桥区、萧山区和越城区(时间自相关成分分别为1.39、0.88和0.77);麻疹本地发病风险较大的区域主要是柯桥区、衢江区和萧山区(局部特性成分分别为4.06、3.74和3.55);麻疹疫情受邻近区域影响较大主要是柯桥区、上虞区和建德市(空间流行成分分别为3.08、2.54和2.21)。结论 浙江省各县(市、区)麻疹疫情的时空流行特征存在异质性,针对性地采取相关措施更易控制麻疹疫情。 Objective To study the spatial-temporal dynamical features of measles in Zhejiang province. Methods Data was from the China Disease Surveillance Information System and China Immunization Program Information Management System. Power-law method on spatial-temporal-multicomponent model was used to analyze the epidemic characteristics of measles in the districts of Zhejiang province. Results The incidence of measles in Zhejiang province was 2.72/100000(1494 cases) in 2013. Compared to the first order adjacent matrix, Power-law method showed a lower value of Akaike information criterion. The follow-up impact from the previous measles epidemic was strong to the Keqiao, Xiaoshan and Yuecheng districts with the autoregressive component as 1.39, 0.88 and 0.77, respectively. Local risk of measles seemed high in Keqiao, Qujiang and Xiaoshan districts with the endemic component as 4.06, 3.74 and 3.55, respectively. Impact of the epidemic to the nearby districts was large in Keqiao, Shangyu districts and Jiande city with epidemic components as 3.08, 2.54 and 2.21, respectively. Conclusion The spatial-temporal feature of measles in several districts of Zhejiang province appeared heterogeneous, suggesting the specific strategies should be taken to control the epidemics of measles.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2016年第4期548-552,共5页 Chinese Journal of Epidemiology
关键词 麻疹 时空多成分模型 Measles Spatial-temporal multicomponent model
  • 相关文献

参考文献13

  • 1Durrheim DN,Strebel PM.Measles vaccine still saves children's lives[J].Lancet,2015,385 (9965):327.DOI:10.1016/S0140-6736(15)60114-3.
  • 2Chen M,Zhang Y,Huang F,et al.Endemic and imported measles virus-associated outbreaks among adults,Beijing,China,2013[J].Emerg Infect Dis,2015,21 (3):477-479.DOI:10.3201/eid2103.140646.
  • 3Marguta R,Parisi A.Impact of human mobility on the periodicities and mechanisms underlying measles dynamics[J].J R Soc Interface,2015,12 (104):20141317.DOI:10.1098/rsif.2014.1317.
  • 4Cauchemez S,Ferguson NM.Likelihood-based estimation of continuous-time epidemic models from time-series data:application to measles transmission in London[J].J R Soc Interface,2008,5 (25):885-897.DOI:10.1098/rsif.2007.1292.
  • 5Bauch CT,Szusz E,Garrison LP.Scheduling of measles vaccination in low-income countries:Projections of a dynamic model[J].Vaccine,2009,27 (31):4090:4098.
  • 6Verguet S,Johri M,Morris SK,et al.Controlling measles using supplemental immunization activities:A mathematical model to inform optimal policy[J].Vaccine,2015,33 (10):1291-1296.DOI:10.1016/j.vaccine.2014.11.050.
  • 7González MC,Hidalgo CA,Barabási AL.Understanding individual human mobility patterns[J].Nature,2008,453 (7196):779-782.DOI:10.1038/nature06958.
  • 8Simini F,González MC,Maritan A,et al.A universal model for mobility and migration patterns[J].Nature,2012,484(7392):96-100.DOI:10.1038/nature 10856.
  • 9Geilhufe M,Held L,Skrφvseth SO,et al.Power law approximations of movement network data for modeling infectious disease spread[J].Biom J,2014,56 (3):363-382.DOI:10.1002/bimj.201200262.
  • 10Herzog SA,Paul M,Held L.Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data[J].Epidemiol Infect,2011,139(4):505-515.DOI:10.1017/S0950268810001664.

二级参考文献7

共引文献40

同被引文献60

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部