期刊文献+

Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition

Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition
下载PDF
导出
摘要 Epitaxial growth of InA1GaN/GaN structures are performed on the c-plane sapphire by pulsed metal organic chemical vapor deposition with different triethylgallium (TEGa) flows in the growth process of InA1GaN qua- ternary alloys. X-ray photoelectron spectroscopy results show that the A1/In ratio of the samples increases as the TEGa flows increase in the InAIGaN quaternary growth process. High-resolution x-ray diffraction results show that the crystal quality is improved with increasing TEGa flows. Morphology of the InA1GaN/GaN het- erostructures is characterized by an atomic force microscopy, and the growth mode of the InA1GaN quaternary shows a 21) island growth mode. The minimum surface roughness is 0.2Ohm with the TEGa flows equaling to 3.6 μool/rain in rms. Hall effect measurement results show that the highest electron mobilityμ is 1005.49 cm2/Vs and the maximal two-dimensional electron gas is 1.63 × 1013 em-2. Epitaxial growth of InA1GaN/GaN structures are performed on the c-plane sapphire by pulsed metal organic chemical vapor deposition with different triethylgallium (TEGa) flows in the growth process of InA1GaN qua- ternary alloys. X-ray photoelectron spectroscopy results show that the A1/In ratio of the samples increases as the TEGa flows increase in the InAIGaN quaternary growth process. High-resolution x-ray diffraction results show that the crystal quality is improved with increasing TEGa flows. Morphology of the InA1GaN/GaN het- erostructures is characterized by an atomic force microscopy, and the growth mode of the InA1GaN quaternary shows a 21) island growth mode. The minimum surface roughness is 0.2Ohm with the TEGa flows equaling to 3.6 μool/rain in rms. Hall effect measurement results show that the highest electron mobilityμ is 1005.49 cm2/Vs and the maximal two-dimensional electron gas is 1.63 × 1013 em-2.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期139-142,共4页 中国物理快报(英文版)
基金 Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002 the National Natural Science Foundation of China under Grant Nos 11435010,61474086 and 61334002
关键词 of Al by GAN in is AFM MODE AIN
  • 相关文献

参考文献23

  • 1Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 Trans. Electron. Devices 48 465.
  • 2Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 Trans. Electron. Devices 48 586.
  • 3Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117.
  • 4Lv L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104.
  • 5Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303.
  • 6Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303.
  • 7Wang R, Li G, Karbasian C, Cuo J, Song B, Yue Y, Hu Z, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H G 2013 IEEE Electron Device Lett. 34 378.
  • 8Lecourt F, Agboton A, Ketteniss N, Behmenburg H, De- france N, Hoel V, Kalisch H, Vescan A, Heuken M and De Jaeger J C 2013 IEEE Electron Device Lett. 34 978.
  • 9Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013.
  • 10Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Left. 31 671.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部