期刊文献+

转矩拮抗型微种植支抗钉的初期稳定性分析 被引量:1

Initial stability analysis of the torque-resisted orthodontic miniscrew anchorage
下载PDF
导出
摘要 目的使用扭矩分析和共振频率分析比较一种转矩拮抗型微种植支抗钉与商用微种植支抗钉的初期稳定性差异。方法以猪肋骨为骨组织模型预成长为4.0 mm,直径为1.0 mm的植入孔,植入两种不同的微种植支抗钉。分别测量最大植入扭矩(maximum insertion torque,MIT)、最大旋出扭矩(maximum removal torque,MRT)、种植体稳定系数(implant stability quotient,ISQ)。使用SPSS 13.0软件对数据进行统计分析。结果转矩拮抗型微种植支抗钉的MIT、MRT、ISQ值分别为(11.86±1.58)N·cm、(8.45±2.24)N·cm、61.80±2.93,商用微种植支抗钉的MIT、MRT、ISQ值分别为(10.36±1.42)N·cm、(6.76±1.78)N·cm、58.15±2.98,转矩拮抗型微种植支抗钉的测量结果均大于商用微种植支抗钉,差异具有统计学意义(P<0.05)。结论转矩拮抗型微种植支抗钉的初期稳定性优于商用微种植支抗钉。 Objective To compare the initial stability difference between a new designed torque-resisted orthodontic miniscrew anchorage and commercial miniscrew anchorage by torque tests and resonance frequency analysis( RFA).Methods After predrilled 4 mm-deep holes with a diameter of 1. 0 mm, two different miniscrews were implanted into the swine ribs for measurement of maximum insertion torque( MIT), maximum removal torque( MRT) and RFA which was recorded as implant stability quotient( ISQ). Statistical analysis was done for all data by SPSS 13. 0. Results The mean value of MIT, MRT, ISQ for new miniscrews were( 11. 86 ± 1. 58) N·cm,( 8. 45 ± 2. 24) N· cm and 61. 80 ± 2. 9 while for commercial miniscrews were( 10. 36 ± 1. 42) N·cm,( 6. 76 ± 1. 78) N·cm and 58. 15 ± 2. 98. The differences between the two miniscrews were statistically significant( P 〈0. 05). Conclusion The torque-resisted miniscrews were more stable than commercial miniscrews.
出处 《口腔疾病防治》 2016年第3期137-141,共5页 Journal of Prevention and Treatment for Stomatological Diseases
基金 广东省科技计划项目(A002014004)
关键词 微种植支抗钉 转矩拮抗 初期稳定性 扭矩分析 共振频率分析 Miniscrew anchorage Torque-resisted Initial stability Torque analysis Resonance frequency analysis
  • 相关文献

参考文献4

二级参考文献69

  • 1马俊青,王林,张卫兵,王震东,严斌.微型支抗种植体即刻加载的界面研究[J].中华口腔医学杂志,2005,40(1):41-41. 被引量:17
  • 2王震东,王林,倪晓宇,马俊青.不同长度微种植体支抗应力差异的三维有限元研究[J].口腔医学,2005,25(2):96-97. 被引量:45
  • 3孔亮,刘宝林,胡开进,李德华,宋应亮,马攀,杨劲.螺纹种植体螺距的优化设计和应力分析[J].华西口腔医学杂志,2006,24(6):509-512. 被引量:23
  • 4De Clerck H, Cornelis M, Timmerman H. Dental tours de force 4. The use of a bone anchor for holding upright a tipped molar in the lower jaw. Ned Tijdschr Tandheelkd ,2004,111 ( 1 ) : 10-13.
  • 5Chung KR, Kim SH, Chaffee MP, et al. Molar distalization with a partially integrated mini-implant to correct unilateral Class I malocclusion. Am J Orthod Dentofacial Orthop, 2010, 138 ( 6 ) : 810-819.
  • 6Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis. Comput Biol Med,2010,40(8) : 681-686.
  • 7Woodall N, Tadepalli SC, Qian F, et al. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop,2011,139(2) : e147-152.
  • 8Lekholm U, Zarb GA. Patient selection and preparation. Chicago: Quintessence, 1985 : 199-209.
  • 9Jasmine MIF, Yezdani AA, Tajir F, et al. Analysis of stress in bone and microimplants during en-masse retraction of maxillary andmandibular anterior teeth with different insertion angulations: a 3-dimensional finite element analysis study. American Journal of Orthodontics and Dentofacial Orthopedics ,2012,141 ( 1 ) : 71-80.
  • 10Cheng SJ,Tseng IY, Lee JJ, et al. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants ,2004,19 ( 1 ) : 100-106.

共引文献10

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部