期刊文献+

基于点云能量计算的半刚性配准算法

SEMI-RIGID REGISTRATION METHOD BASED ON POINT CLOUD ENERGY CALCULATION
下载PDF
导出
摘要 针对3D复杂点云模型,提出一种基于能量值的半刚性配准算法。该算法首先对点云进行基于法向量夹角距离的分割处理从而生成多个刚性子点云。通过整数规划法计算子点云间的配准能量从而推测配准的初始3D变换矩阵。基于初始矩阵,点云的最终配准结果由子点云间刚性配准方法 ICP实现。实验结果证明该方法可有效应用于模拟场景以及真实复杂场景的配准应用中。 We proposed an energy value-based semi-rigid registration method for 3D complex point cloud model. First the method segments the point cloud based on distance of normal vector angle so as to generate a couple of rigid sub-point clouds. Then it calculates the alignment energy between sub-point clouds with integer programming method so that to speculate on the initial 3D transformation matrix of registration.Based on initial matrix,the finial registration result is implemented by rigid alignments method ICP among sub-point clouds. Experimental results demonstrated that the method can be effectively applied to the registration applications in simulative scenes and real complex scenes.
出处 《计算机应用与软件》 CSCD 2016年第3期184-187,192,共5页 Computer Applications and Software
基金 国家自然科学科学基金项目(61300082) 辽宁省教育厅科学研究项目(L2014575) 大连东软信息学院博士启动基金项目(ZX2014KJ003)
关键词 半刚性配准 点云分割 点云能量 整数规划法 Semi-rigid registration Point cloud segmentation Point cloud energy Integer programming
  • 相关文献

参考文献17

  • 1Baowei Lin,Yuji Ueno,K Sakai,et al.Image based Detection of 3D Scene Change[J].IEEJ Transactions on Electronics Information and Systems,2013,133(1):103-110.
  • 2Besl P J,Mc Kay N D.A Method for Registration of 3-D Shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),1991,14(2):239-256.
  • 3Johnson A E,Hebert M.Using spin images for efficient object recognition in cluttered 3D scene[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),1999,21(5):433-449.
  • 4Steder B,Rusu R B,Konolige K,et al.:NARF:3D range image features for object recognition[C]//Proceedings of Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at IROS,2010.
  • 5Belongie S,Malik J,Puzicha J.Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2002,24(4):509-522.
  • 6Scovanner P,Ali S,Shah M.A 3-dimensional sift descriptor and its application to action recognition[C]//Proceedings of the 15th international conference on Multimedia,ACM,2007:357-360.
  • 7Cheung W,Hamarneh G.n-sift:n-dimensional scale invariant feature transform[J].IEEE Trans.Image Process,2009,18(9):2012-2021.
  • 8Baatz G,Koser K,Chen D,et al.Leveraging 3D city models for rotation invariant place-of-interest recognition[J].International Journal of Computer Vision(IJCV),2012,96(3):315-334.
  • 9Baowei Lin,Toru Tamaki,Malcos Slomp,et al.3D Keypoints Detection from a 3D Point Cloud for Real-Time Camera Tracking[J].IEEJ Transactions on Electronics,Information and Systems,2013,133(1):84-90.
  • 10Sclaroff S,Pentland A.Modal Matching for Correspondence and Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),1995,17(6):545-561.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部