期刊文献+

一种无候选项的闭合序列模式挖掘算法 被引量:1

A CLOSED SEQUENTIAL PATTERN MINING ALGORITHM WITHOUT CANDIDATE TERMS
下载PDF
导出
摘要 算法Clo Span在挖掘闭合序列模式时分两阶段进行,首先产生候选的闭合序列模式,然后在此基础上挖掘闭合序列模式。针对Clo Span算法中大量候选模式影响挖掘效率的问题,提出改进的算法ss Clo Span。该算法在序列模式增长时,利用支持度和末节点哈希表剪枝非闭合模式,同时利用频繁项头表进行闭合性检测。实验结果表明,对于不含项集项的序列,当存在较长频繁序列时,挖掘效率得到了有效的提高。 When mining the closed sequential patterns,the algorithm Clo Span does it in two phases. First,it will generate the candidate closed sequential patterns,and then based on this it mines the closed sequential patterns. Aiming at the problem of numerous candidate patterns impacting the mining efficiency in Clo Span algorithm,we proposed an improved algorithm called ss Clo Span. This algorithm prunes the non-closed patterns using support degree and last node hash table in the course of sequential pattern growth,meanwhile it uses frequent item header table for closure checking. Experimental results showed that for the sequences without itemsets and with longer frequent sequence,the mining efficiency was well improved.
出处 《计算机应用与软件》 CSCD 2016年第3期279-283,共5页 Computer Applications and Software
基金 湖北省自然科学基金项目(2013CFB039) 湖北省教育厅重点科学研究项目(D20144403) 湖北省教育厅科学研究项目(B2013064) 湖北理工学院优秀青年科技创新团队项目(13xtz10)
关键词 闭合序列模式 支持数剪枝 末节点哈希表 频繁项头表 Closed sequential pattern Support number pruning Last node hash table Frequent item header table
  • 相关文献

参考文献10

二级参考文献44

  • 1易彤,徐宝文,吴方君.一种基于FP树的挖掘关联规则的增量更新算法[J].计算机学报,2004,27(5):703-710. 被引量:32
  • 2董祥军,王淑静,宋瀚涛.基于两级支持度的正、负关联规则挖掘[J].计算机工程,2005,31(10):16-18. 被引量:19
  • 3张坤,朱扬勇.无重复投影数据库扫描的序列模式挖掘算法[J].计算机研究与发展,2007,44(1):126-132. 被引量:17
  • 4Han Jiawei,Kamber M.Data Mining Concepts and Techniques[M].范明,译.北京:机械工业出版社,2001.
  • 5Heckerman D.Anonymous Web Data Set[DB/OL].[2008-11-14].http://archive.ics.uci.edu/ml/datasets/MSNBC.comAnonymousWeb.
  • 6Zheng Zijian,Kohavi R.Real World Performance of Association Rule Algorithms[C]//Proceedings of the 7th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2001.
  • 7Pei Jian,Han Jianwei,Mortazavi A B,et al.PrefixSpan:Mining Sequential Patterns Efficiently by Prefix Projected Pattern Growth[C]//Proceedings of the 17th International Conference on Data Engineering.Heidelberg,Germany:[s.n.],2001:215-226.
  • 8Burke R.ENTREE Chicago Recommendation Data Set[Z].[2008-11-11].http://archive.ics.uci.edu//mldataset/entre+Chicago+Recom mendation+Data.
  • 9AGRAWAL B, SRIKANT It. Mining sequential patterns [C]// ICDE '95: Proceedings of the Eleventh International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1995:3 - 14.
  • 10SRIKANT R, AGRAWAL R. Mining sequential patterns: generalizations and performance improvements [ C]// EDBT '96: Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology. Berlin: Springer-Verlag, 1996:3 - 17.

共引文献24

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部