期刊文献+

基于深度图像信息的指尖跟踪与轨迹识别 被引量:2

FINGERTIP TRACKING AND TRAJECTORY RECOGNITION BASED ON DEPTH IMAGE INFORMATION
下载PDF
导出
摘要 针对基于传统摄像头获取的二维图像难以准确区分复杂环境下目标和背景的问题,提出一种利用Kinect摄像头对复杂背景下手指指尖的跟踪算法,并对指尖跟踪的轨迹进行识别。首先利用Kinect获取的深度图像信息对手部进行分割和指尖检测;然后利用压缩感知方法对跟踪目标进行特征提取,通过朴素贝叶斯(NB)分类器分类跟踪目标和背景;最后,通过支持向量机(SVM)方法对跟踪的轨迹进行识别。实验结果表明,提出的方法能够成功地跟踪手指指尖的位置,同时能够准确识别出指尖跟踪的轨迹。 It is difficult to accurately distinguish the object and the background under the complex environment in two-dimensional image acquired based on traditional camera. To solve the problem,we proposed a tracking method which utilises Kinect camera aiming at the fingertip in complex background,and recognises the trajectory of fingertip tracking. First,it uses the depth image information captured by Kinect to segment the hand and to detect the fingertip. Subsequently,it uses compressive sensing method to extract features from tracking object,and employs the naive Bayesian( NB) algorithm to classify the tracking object and background. Finally,it uses support vector machine( SVM) method to recognise the tracking trajectory. Experimental results showed that the proposed method can successfully track the fingertip locations and accurately recognise the fingertip trajectory at the same time.
作者 李哲 彭四伟
出处 《计算机应用与软件》 CSCD 2016年第4期155-159,172,共6页 Computer Applications and Software
关键词 KINECT 指尖跟踪 深度图像 压缩感知 手势轨迹识别 支持向量机 Kinect Fingertip tracking Depth image Compressive sensing Fingertip trajectory recognition Support vector machine (SVM)
  • 相关文献

参考文献20

  • 1刘伟华,樊养余,雷涛.基于深度图像的运动人手检测与指尖点跟踪算法[J].计算机应用,2014,34(5):1442-1448. 被引量:8
  • 2Tsai T C,Chung Y S.A Kinect-based handwritten digit recognition for TV remote controller[C]//2012 IEEE International Symposium on Intelligent Signal Processing and Communication Systems.Taipei:IEEEPress,2012:4-7.
  • 3邓瑞,周玲玲,应忍冬.基于Kinect深度信息的手势提取与识别研究[J].计算机应用研究,2013,30(4):1263-1265. 被引量:44
  • 4张毅,张烁,罗元,徐晓东.基于Kinect深度图像信息的手势轨迹识别及应用[J].计算机应用研究,2012,29(9):3547-3550. 被引量:66
  • 5晏浩,张明敏,童晶,潘志庚.基于Kinect的实时稳定的三维多手指跟踪算法[J].计算机辅助设计与图形学学报,2013,25(12):1801-1809. 被引量:12
  • 6Lee D,Park Y.Vision-based remote control system by motion detection and open finger counting[J].IEEE Transactions on Consumer Electronics,2009,55(4):2308-2313.
  • 7Kang S K,Nam M Y,Rhee P K.Color based hand and finger detec-tion technology for user interaction[C]//Proceedings of the 2008 International Conference on Convergence and Hybrid Information Technology.Washington,DC:IEEE Computer Society,2008:229-236.
  • 8Thangali A,Sclaroff S.An alignment based similarity measure for hand detection in cluttered sign language video[C]//Proceedings of the2009 IEEE Computer Society Conference on Computer Vision and pattern Recognition.Piscataway:IEEE Press,2009:89-96.
  • 9Alon J,Athitsos V,Yuan Q,et al.A unified framework for gesture recognition and spatiotemporal gesture segmentation[J].IEEE Transactions on pattern Analysis and Machine Intelligence,2009,31(9):1685-1699.
  • 10Elmezain M,Alhamadi A,Michaelis B.Real-time capable system for hand gesture recognition using hidden Markov models in stereo color image sequences[J].Journal of Winter School of Computer Graphics,2008,16(1):65-72.

二级参考文献72

  • 1陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 2刘宝生,闫莉萍,周东华.基于最小最大圆度量的鲁棒模板匹配方法[J].红外与激光工程,2006,35(5):618-623. 被引量:5
  • 3ZHANG Jian-jie, LIN Hao, ZHAO Ming-guo. A fast algorithm for hand gesture recognition using relief [ C ]//Proc of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. 2009 : 8-12.
  • 4KAO M C, LI T H S. Design and implementation of interaction system between humanoid robot and human hand gesture [ C]//Proc of SICE Annual Conference. [S. 1. ] : IEEE Press,2010: 1616- 1621.
  • 5CHEN Qing, GEORGANAS N D, PETRIU E M. Real-time vision-based hand gesture recognition using Haar-like features [ C ] //Proc of IEEE Instrumentation and Measurement Technology Conferencec. [ S. 1. ] : IEEE Press,2007:l-6.
  • 6ZHANG Shi-lin, ZHANG Bo. Using HMM to sign language video retrieval [ C ]//Proc of the 2nd International Conference on Computational Intelligence and Natural Computing. 2010 :55-59.
  • 7SILANON K, SUVONVORN N. Hand motion analysis for Thai alphabet recognition using HMM[J]. International Journal of Information and 日ectronics Engineering, 2011,1 (1) :65-71.
  • 8IKEMURA S, FUJIYOSHI H. Real-time human detection using relational depth similarity features [ C ] //Proc of the 10th Asian Conference on Computer Vision. 2011 :25-38.
  • 9URTASUN R, FUA P. 3D human body tracking using deterministic temporal motion models [ C ] //Proc of the 10th Asian Conference on Computer Vision. 2004 : 92-106.
  • 10杨青.手势识别就是研究[D].大连:大连理工大学,2010.

共引文献131

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部