期刊文献+

改进同余变换不变特征的视频拼接算法

VIDEO STITCHING ALGORITHM BASED ON IMPROVED CONGRUENCE TRANSFORMATION INVARIANT FEATURE
下载PDF
导出
摘要 视频拼接的平滑过渡问题,是图像处理的难点,为很好地解决这一问题,提出一种基于Sobel算子改进的同余变换不变特征CIF(Congruence transformation Invariant Feature)的视频拼接算法。在图像配准阶段,采集视频序列的关键帧,首先运用改进的CIF算法提取特征点并匹配,然后基于RANSAC算法,估算并优化空间变换矩阵。在图像融合阶段,采用动态连接缝调整算法与色调正常化算法协同工作,以消除图像重合区域的重影与色差。实验表明,该算法不仅能够实现视频的实时拼接,还能很好解决视频拼接的平滑过渡问题。 Smooth transition of video stitching is a nodus in image processing,in order to better solve this problem,the paper puts forward a video stitching algorithm which is based on CIF( Congruence transformation Invariant Feature) improved by Sobel operator. In the stage of image registration,we collected the key frames in video sequence,and extracted the features by using improved CIF algorithm firstly and matched them with key frames. Then,based on RANSAC algorithm we estimated and optimised the matrix of space transformation. In the stage of image blending,we used the dynamic adjusting algorithm of connect seam and colour tone normalisation algorithm to work collaboratively so as to eliminate the ghosting problem and colour differences in overlapped area between two parts of the image. Experiments showed that the proposed algorithm can achieve real-time video stitching,and can also resolve the smooth transition of video stitching.
出处 《计算机应用与软件》 CSCD 2016年第4期196-201,共6页 Computer Applications and Software
基金 中央高校基本科研业务费专项(NS2013016) 南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj201464)
关键词 视频拼接 同余变换不变特征算法 SOBEL算子 特征点对 动态连接缝调整算法 图像色调正常化算法 Video stitching Congruence transformation invariant feature Sobel operator Feature points pair Dynamic adjusting algorithm of connect seam Image tone normalisation algorithm
  • 相关文献

参考文献21

  • 1Fei Lei,Wenxue Wang.A Fast Method for Image Mosaic Based on SURF[C]//Proc.of the 9th Conference on Industrial Electronics and Applications.IEEE Press,2014:79-82.
  • 2Ying Zhang,Lei Yang,Zhujun Wang.Research on Video Image Stitching Technology Based on SURF[C]//Proc.of 2012 Fifth International Symposium on Computational Intelligence and Design.IEEEPress,2012:335-338.
  • 3David G Lowe.Object Recognition from Local Scale-Invariant Features[C]//Proc.of the International Conference on Computer Vision.IEEEPress,1999-9.
  • 4Herbert Bay,Andreas Ess,Tinne Tuytelaars,et al.Speeded-Up Robust Features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-389.
  • 5Dianyuan Han.A Standing Tree Image Mosaic Algorithm Based on SIFT[C]//Proc.of 2012 International Conference on Computer Science and Electronics Engineering.IEEE Press,2012:353-356.
  • 6Dianyuan Han.A Method to Standing Tree Image Mosaic Based on SURF in Pocket PC[C]//Proc.of 2012 International Conference on Computer Science and Electronics Engineering.IEEE Press,2012:330-333.
  • 7Rosten E,Drummond T.Machine Learning for High Speed Corner Detection[C]//Proc.of the 9th European Conference on Computer Vision.IEEE Press,2006:430-443.
  • 8Rosten E,Porter R,Drummond T.Faster and Better:A Machine Learning Approach to Corner Detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2010,32(1):105-119.
  • 9Rublee E,Rabaud V,Konolige K,et al.ORB:An Efficient Alternative to SIFT or SURF[C]//Proc.of International Conference on Computer Vision.IEEE Press,2011:2564-2571.
  • 10Calonder M,Lepetit V,Strecha C,et al.Brief:Binary Robust Independent Elementary Features[C]//Proc.of European Conference on Computer Vision.IEEE Press,2010.

二级参考文献102

  • 1蔡铮,汪源源,王威琪.一种改进的基于形变方法的图像拼接算法[J].仪器仪表学报,2006,27(z1):721-723. 被引量:3
  • 2黎松,平西建,丁益洪.开放源代码的计算机视觉类库OpenCv的应用[J].计算机应用与软件,2005,22(8):134-136. 被引量:58
  • 3朱云芳,叶秀清,顾伟康.视频序列的全景图拼接技术[J].中国图象图形学报,2006,11(8):1150-1155. 被引量:19
  • 4HSU S,SAWHNEY H S,KUMAR R.Automated mosaics via topology inference[J].IEEE Computer Graphics and Applications,2002,22(2):44-54.
  • 5SAWHNEY H S,KUMAR R,GENDEL G,et al.VideoBrush:Experiences with consumer video mosaicing[A].Proceedings of the Workshop on Applications of Computer Vision[C].Princeton,1998:56-62.
  • 6BROWN M,LOWE D G.Recognising panoramas[A].Proceedings of the 9th International Conference on Computer Vision[C].Nice,France,2003:1218-1225.
  • 7STAUFFER C,GRIMSON W E L.Adaptive background mixture models for real-time tracking[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].1999,(2):246-252.
  • 8KADEWTRAKUPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[A].Proceedings of 2nd European Workshop on Advanced Video-Based Surveillance Systems[C].Kingston,UK,2001:149-158.
  • 9LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10DAVIS J.Mosaics of scenes with moving objects[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Santa Barbara,1998:354-360.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部