期刊文献+

一种两状态动态优化的自学习差异进化算法

A SELF-LEARNING DIFFERENTIAL EVOLUTION ALGORITHM WITH DUAL-STATE DYNAMIC OPTIMISATION
下载PDF
导出
摘要 提出一种具有自学习机制的差异进化算法Se DE(Self-Learning Differential Evolution),提高在动态优化求解过程中群体适应环境动态变化的能力。采用重新评估特定个体的方式监测环境变化。通过群体向新状态历史最优解引导学习,将当代最优个体和两随机个体共同引导个体,保持群体多样性的同时加快算法收敛速度,降低环境的频繁变化对算法搜索能力的影响。通过6个动态函数测试了变化周期、函数维数对算法的影响,同时将新算法与两个同类算法比较,实验结果表明,自学习差异进化能更快地适应环境动态变化,获得更好的优化结果。 We proposed a differential evolution algorithm with self-learning mechanism for improving the capability of population in adapting to dynamic environmental changes in dynamically optimised solving process. By using the approach of re-evaluating specific individuals the algorithm monitors the environmental changes. Through population it guides the learning of the new state historical optimal solution,and guides the individuals by the contemporary optimal individual and the dual random individuals jointly; it keeps the diversity of the population while speeding up the convergence rate of the algorithm,and reduces the impact of frequent environmental changes on algorithm's search ability. We tested the influences of change period and function's dimension on the algorithm through 6 dynamic functions,and compared the new algorithm with two similar algorithms at the same time. Experimental result demonstrated that the self-learning differential algorithm could adapt to the dynamic environmental changes more rapidly and achieved better optimisation result.
出处 《计算机应用与软件》 CSCD 2016年第4期242-245,333,共5页 Computer Applications and Software
基金 国家社科基金项目(14XXW004) 教育部社科基金项目(11XJJAZH001) 新疆生产建设兵团社科基金项目(13QN11)
关键词 智能计算 差异进化 动态优化 自学习机制 Intelligent computation Differential evolution Dynamic optimisation Self-learning mechanism
  • 相关文献

参考文献3

二级参考文献25

  • 1王湘中,喻寿益.多模态函数优化的多种群进化策略[J].控制与决策,2006,21(3):285-288. 被引量:19
  • 2JIN Yaochu,BRANKE J.Evolutionary optimization in uncertain environments-a survey[J].IEEE Transactions on Evolutionary Computation,2005,7(3):303-317.
  • 3TIN'OS R,CARVALHO A.A genetic algorithm with gene dependent mutation probability for nonstationary optimization problems[C]//Proceedings of 2004 Congress on Evolutionary Computing.Portland:IEEE Press,2004,1278-1285.
  • 4WANG Hongfeng,WANG Dingwei.An improved primal-dual genetic algorithm for optimization in dynamic environments[J].Lecture Notes in Computer Science,2006,4234:835-844.
  • 5YANG Shengxiang.Population-based incremental learning with memory scheme for changing environments[C]//Proceedings of the Genetic and Evolutionary Computation Conference.Washington:ACM Press,2005,711-718.
  • 6UVAR A S,HARMANCI A E.A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments]J].Soft Computing-A Fusion of Foundations,Methodologies and Applications,2005,9(11):803-814.
  • 7YANG Shengxiang.Associative memory scheme for genetic algorithms in dynamic environments[J].Lecture Notes in Computer Science,2006,3907:788-799.
  • 8LOUIS S,XU Zhijie.Genetic algorithms for open shop scheduling and rescheduling[C]//ISCA 11th Int,1.Conf.on Computers and Their Applications.Cancun:IEEE Press,1996:99-102.
  • 9BRANKE J.Memory enhanced evolutionary algorithms for changing optimization problems[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington:IEEE Press,1999:1875-1882.
  • 10KARAMAN A,UYAR S,ERYIGIT G.The memory indexing evolutionary algorithm for dynamic environments[J].Lecture Notes in Computer Science.Springer,2005,3499:563-573.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部