期刊文献+

Mn-N共掺杂TiO_2电子结构和光学性质的第一性原理计算 被引量:14

First-principles calculation on the electronic structure and photoelectric properties of Mn-N co-doped TiO_2
下载PDF
导出
摘要 本文采用第一性原理研究了Mn、N掺杂TiO_2和Mn-N共掺杂TiO_2的能带结构、态密度和Mn-N共掺TiO_2对体系介电函数与吸收谱的影响.研究结果表明,Mn掺杂TiO_2的能带结构的禁带内出现的杂质能级是由Mn的3d轨道贡献;N掺杂TiO_2在费米能级处的杂质能级则由O 2p,Ti 3d和N 2p轨道杂化形成;Mn-N共掺的TiO_2能带在费米能级处的杂质能级则由O 2p,Ti和Mn的3d以及N 2p轨道杂化形成;对于介电函数,在低能区间(<2.5 e V),理想TiO_2无介电峰,Mn-N共掺体系则出现了两个介电峰,原因在于Mn 3d态和N 2p态使介电峰值向低能区移动;同时,与理想TiO_2的吸收谱相比,最大的变化是在可见光区出现了一个吸收峰,且在可见光区的响应的范围变宽. The first -principles methods are used to study the band structures and the densities of states of the Mn doped TiO2 and N doped TiO2 and Mn - N co - doped TiO2. In addition, the dielectric functions and absorp- tion spectra of the Mn - N co - doped TiO2were also studied. It is shown that the impurity levels in forbidden en- ergy of Mn doped TiO2 were contributed by the Mn 3d; at the fermi level, the impurity level of N doped TiO2 is composed of O 2p, Ti 3d and N 2p orbital hybrid ; the impurity levels of the Mn - N co - doped TiO2 were con- tributed by the O 2p, Ti 3d, Mn 3d and N 2p at the fermi level. For the dielectric function, the pure TiO2 with- out the dielectric peak and the Mn -N co -doped TiO2 system have two dielectric peaks in the low energy range ( 〈2.5 eV), it is reason that the dielectric peaks shifts to lower energy region by Mn 3d and N 2p states. At the same time, the Mn - N co - doped TiO2 system have an absorption peaks in the visible region compared with the pure TiO2, and the response turn width in the range of visible light.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2016年第2期345-350,共6页 Journal of Atomic and Molecular Physics
基金 永川区自然科学基金(Ycstc 2014nc4002) 重庆文理学院校级科研项目(Z2015DQ07)
关键词 第一性原理 TIO2 能带结构 介电函数 First principles TiO2 Band structures Dielectric function
  • 相关文献

参考文献3

二级参考文献66

  • 1刘学超,施尔畏,宋力昕,张华伟,陈之战.固相反应法制备Co掺杂ZnO的磁性和光学性能研究[J].物理学报,2006,55(5):2557-2561. 被引量:27
  • 2沈益斌,周勋,徐明,丁迎春,段满益,令狐荣锋,祝文军.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445. 被引量:56
  • 3Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
  • 4Dietl T, Ohno H, Matsukura F 2001 Phys. Rev. B 63 195205
  • 5Sato K, Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 555
  • 6Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988
  • 7Zheng B G, Chang S Y, Ming H L, Jing W, Di W, Shan T Z, Shi N Z, Yong Y Z, Yan F C 2005 J. Appl. Phys. 98 053908
  • 8Du C L, Gu Z B, Lu M H, Wang S, Zhang T, Zhao J, Cheng G X, Heng H, Chen Y F 2006 J. Appl. Phys. 99 123515
  • 9Du C L, Gu Z B, You Y M, Kasim J, Yu T, Shen Z X, Ni Z H, Ma Y, Cheng G X, Chen Y F 2008 J. Appl. Phys. 103 023521
  • 10Tan C L, Cai W, Tian X H 2006 Chin. Phys. 15 2718

共引文献35

同被引文献63

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部