摘要
对2维高阶线性椭圆方程进行了Lie对称分析.给出该方程拥有的无穷维Lie代数及其核心7维子Lie代数的1阶优化系统;构造了该椭圆方程对应优化系统的约化及不变精确解.最后给出了Lie代数在该方程初边值问题求解上的应用.
A Lie symmetry analysis is given for 2-dimensional linear elliptic equations.The infinite dimensional Lie algebra admitted by the equations is found and a one-dimensional optimal system of its 7-dimensional key sub-algebra is constructed.The symmetry reductions and invariant exact solutions for the equations with respect to the optimal system are given.At last,the applications of the symmetry method on the boundary value problems of the elliptic equations are investigated.
出处
《内蒙古大学学报(自然科学版)》
CAS
北大核心
2016年第2期120-127,共8页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金项目(No.11571008)资助
关键词
高阶椭圆方程
LIE代数
优化系统
不变解
初边值问题
high-order elliptic equation
Lie algebra
optimal system
invariant solution
initial boundary value problem