期刊文献+

带有确定度的模糊图像分类 被引量:1

Fuzzy Image Classification with a Certain Degree
原文传递
导出
摘要 提出带有确定度的关联度的图像模糊分类新方法。该方法在求得每幅图像相对各个图像类别的关联度基础上,求得一幅图像相对各个类别的确定度,将一幅图像的确定度作为相应图像关联度的权,以带权的关联度为最大准则,确定待识别图像类别的属性。识别图像类别的第二个准则是,以带有确定度的关联度为特征,采用与聚类中心距离最小准则,确定待识别图像的类别。通过由三种不同类别图像组成的多种组合的试验,试验中满足两个准则之一的实验结果表明,该方法的结果具有一定的优势。 We proposed a new image fuzzy classification method of correlation degree with a certain degree.The correlation degree basis points are obtained in each image category,and the certain degree of an image related to each category are calculated.The certain degree of an image is the weight of the corresponding image correlation degree,and the attribute of the image classification to be recognized is determined by the maximum criterion,which is the correlation degree with a weight.In this paper,to recognize the image category,the second criterion is characterized by the correlation degree with a certain degree is that the classification of the image to be recognized is determined with the principle of minimum distance between clustering centers.In several experiments with three categories of images,the experimental results which meet one of the two principles in the experiment show that the results of this method has certain advantages.
作者 郑肇葆 郑宏
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第4期482-486,共5页 Geomatics and Information Science of Wuhan University
基金 深圳市科技计划(JCYJ20150422150029095)~~
关键词 确定度 图像关联度 图像模糊分类 certain degree image correlation degree image fuzzy classification
  • 相关文献

参考文献7

二级参考文献21

  • 1郑肇葆,叶志伟.基于蚁群行为仿真的影像纹理分类[J].武汉大学学报(信息科学版),2004,29(8):669-673. 被引量:10
  • 2郑肇葆,黄桂兰.航空影像纹理分类的最小二乘法和问题的分析[J].测绘学报,1996,25(2):121-126. 被引量:13
  • 3郑肇葆,潘励,虞欣.产生“Tuned”模板的Bayesian Networks方法[J].武汉大学学报(信息科学版),2006,31(4):304-307. 被引量:8
  • 4郑肇葆.基于Bayesian线性规划的影像纹理识别方法[J].武汉大学学报(信息科学版),2007,32(3):193-196. 被引量:2
  • 5Chong S C, Sivakumar A L, Low M Y H, et al. A Bee Colony Optimization Algorithm to Job Shop Scheduling [C]. Winter Simulation Conference, Monterey, California, 2006.
  • 6Afshar A, Marino M A, Ebtehaj M, et al. Honey bee Mating Optimization (HBMO) Algorithm for Optimal Reservoir Operation [J]. Journal of the Franklin Institute, 2007, 344(5): 452-462.
  • 7Amiri B, Fathian M. Integration of Sell organizing Feature Maps and Honey Bee Mating Optimization Algorithm For Market Segmentation[J]. Journal of Theoretical and Applied Information Technology, 2007,3(3) :70-86.
  • 8Dyer F C. The Biology of the Dance Language[J]. Annual Review of Entomology, 2002, 47:917-949.
  • 9You J,Patterm Recognition,1993年,26卷,2期,245页
  • 10You J, Cohen H A. Classification and Segmentation of Rotated and Sealed Textured Image Using Texture "Tuned" Masks [J], Pattern Recognition,1993,26(2): 245-258

共引文献15

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部