期刊文献+

空间数据插值的自动化方法研究 被引量:9

Automatic Method of Kriging Interpolation of Spatial Data
原文传递
导出
摘要 克里金插值是空间数据插值的常用方法,其关键在于变异函数的正确拟合。目前一些空间统计分析工具及开发包对变异函数的拟合主要以一定的人工经验为先导,通过直观的方法来确定变异函数的一些参数并反复调整,这种人工干预的操作步骤不仅妨碍了克里金插值的自动化,参数设置和模型选择也没有科学理论依据,因此预测的结果往往不精确。针对这一问题,围绕着自动化目标,基于R语言中的变异函数的自动拟合函数实现了自动克里金插值,并对自动拟合模型进行了自动交叉验证。实验结果表明该空间数据插值自动化方法可行。 Kriging interpolation is a common method applied to spatial data.Correct fitting of the variogram mode is the key to kriging interpolation.At present,experience is the guide when fitting variograms in analysis tools and development kits.An intuitional method is used to determine the parameters of a variogram and the parameters are adjusted reiteratively.These artificial operational steps obstruct the automation of kriging interpolation but also are not based on scientific theories relevant to setting parameters and option modes As a result,the predictive results are not exact.Aiming to address this problem and with the goal of automating the process,in this paper we calculate the sampling variogram and an automatic fitting algorithm for variograms is studied.Automatic kriging interpolation is realized and automatic cross validation is conducted based on the automatic fitting function in R language.The results of experiments show that a automatic method for kriging interpolation to spatial data is feasible.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第4期498-502,共5页 Geomatics and Information Science of Wuhan University
基金 国家水体污染控制与治理科技重大专项(2013ZX07503-001-06) 湖北省重大科技创新计划(2013AAA020)~~
关键词 变异函数 插值 自动拟合 自动克里金 自动交叉验证 variogram interpolation automatic fitting automatic kriging automatic cross validation
  • 相关文献

参考文献7

  • 1李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报(信息科学版),2012,37(2):237-241. 被引量:47
  • 2徐爱萍,圣文顺,舒红.时空积和模型的数据插值与交叉验证[J].武汉大学学报(信息科学版),2012,37(7):766-769. 被引量:9
  • 3R-Prgect. org. CRAN-Package Automap[OL]. ht- tp://cran, r-project, org/web/packages/automap/ index, html.
  • 4Li Shaohua, Lu Wentao. Automatic Fit of the Vari- ogram[C]. Third International Conference on Infor- mation and Computing, Wuxi, China, 2010.
  • 5Pesquer L, Cortfis A, Pons X. Parallel Ordinary Kriging Interpolation Incorporating Automatic Vari- ogram Fitting[J]. Computers g Geosciences , 2011, 37(1) .. 464-473.
  • 6徐爱萍,舒红. 空间数据分析与R语言实践[M]. 北京:清华大学出版社,2013.
  • 7郑兴文,胡泓达,许家琦,舒红.Kriging插值组件的混合编程实现[J].城市勘测,2013(6):139-142. 被引量:1

二级参考文献28

  • 1杨德伟,陈治谏,倪华勇,蒋莉,廖晓勇.基于能值分析的四川省生态经济系统可持续性评估[J].长江流域资源与环境,2006,15(3):303-309. 被引量:37
  • 2李志毅,赵政.软件复用与COM及.NET组件技术[J].微处理机,2006,27(6):57-60. 被引量:7
  • 3Willmott C J, Robeson S M. Climatologically Aided Interpolation of Terrestrial Air Temperature[J].International Journal of Climatology, 1995, 15 (2) 221-229.
  • 4Koike K, Matsuda S, Gu B. Evaluation of Interpolation Accuracy of Neural Kriging with Application to Temperature-distribution Analysis[J].Mathematical Geology, 2001, 33(4): 421-448.
  • 5Nalder I A, Wein R W. Spatial Interpolation of Cli- mate Normals: Test of a New Method in the Canadian Boreal Forest[J]. Agric For Meteorol, 1998, 92:211-225.
  • 6侯景儒.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1998.
  • 7de Cesare L, Myers D E, Posa D. Spatial-Temporal Modeling of SO2 in Milan District[C]. Geostatistics Wollongong'96, Dordrecht, 1996.
  • 8Rouhani S, Hall T J. Space-Time Kriging of Ground Water Data[C]. Geostatistics, Dordrecht, 1989.
  • 9Brown P E, Karesen K F, Roberts G O, et al. Blur-generated Non-separable Space-Time Models [J]. J Roy Statist SocB, 2000, 62:847-860.
  • 10Ma C. Families of Spatio-temporal Stationary Covariance Models[J]. J Stat Plan Infer, 2003, 116: 489-501.

共引文献53

同被引文献97

引证文献9

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部