期刊文献+

面向微型机器人的无线供电系统变空间尺度问题综述 被引量:2

Review on Variable Spatial Scales Issues of Wireless Power Transfer System for Micro-robots
下载PDF
导出
摘要 超磁致执行器(GMA)具有结构简单、位移大以及输出力强、机械强度高等优点,可作为微型机器人的动力装置,其核心元件超磁致伸缩材料可通过电磁场驱动,从而实现微型机器人远程无线供电。在实际应用中,随着微型机器人运动轨迹的变化,GMA与供电系统发射线圈的空间位置关系即空间尺度也实时变化,进而影响无线供电系统的传输特性,包括传输功率和传输效率。基于此,重点论述了无线供电系统在变空间尺度情况下的工作机理及现有问题的解决方案,为实现微型机器人高效稳定供电提供参考和借鉴。 Giant magnetostrictive actuator (GMA) has the advantages of simple structure, large displacement, high output torque and mechanical strength, etc.,which can be used as the power device for mirco-robots.As the key component of GMA,the giant magnetostrictive material can be driven by the electromagnetic field,thus the long-distance wire-less power for micro-robots can be realized.In practical applications, the spatial position of GMA and sending coil of wireless power transfer(WPT) system, i.e., the spatial scales varies with the movement variation of micro-robots, which has a vital influence on the transfer characteristics of WPT system,including the transfer power and transfer effficiency.The operation principle of WPT system under various spatial scales is analyzed, focusing on the mutual inductance between sending coil and receiving coil, along with the present solutions to tackle the variable spatial scales issues, which will provide an important reference to realize the high efficiency and stability power supply for micro-robots.
作者 陈旭玲 陈阳
出处 《电力电子技术》 CSCD 北大核心 2016年第4期75-78,共4页 Power Electronics
基金 国家自然科学基金(51505223) 南京航空航天大学青年科技创新基金(56XAA15047)~~
关键词 微型机器人 超磁致伸缩 磁耦合谐振 micro-robots giant magnetostrictive magnetically coupled resonant
  • 相关文献

参考文献9

  • 1Kurs A, Karalis A, Moffatt R, et al.Wireless Power Tran- sfer Via Strongly Coupled Magnetic Resonances[J].Sci- ence, 2007,317 ( 58 ) : 83-86.
  • 2李阳,杨庆新,闫卓,张超,陈海燕,张献.磁耦合谐振式无线电能传输方向性分析与验证[J].电工技术学报,2014,29(2):197-203. 被引量:74
  • 3Sample A P, Meyer D A, Smith J R.Analysis, Experimen- tal Results, and Range Adaptation of Magnetically Cou- pled Resonators for Wireless Power Transfer [J].IEEE Trans. on Ind. Electron.,2011,58(2) :544-554.
  • 4Zhong W X,R Hui S Y.Maximum Energy Efficiency Tracking for Wireless Power Transfer Systems[J].IEEE Trans. on Power Electron., 2015,30 (7) : 4025-4034.
  • 5Kim N Y, Kim K Y, Ryu Y H,et al.Automated Adaptive Frequenc Tracking System for Efficient Mid-range Wire- less Power Transfer Via Magnetic Resonance Coupling [A].Proceedings of the 42nd European Microwave Confer- ence [C].Amsterdam, Netherlands, 2012,29 ( 10 ) : 430 - 435.
  • 6Li H C,Li J,Wang K P,et al.A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling[J]. IEEE Trans. on Power Electron., 2015,30 (7) : 3998- 4008.
  • 7Raabe S,Covie G A.Practical Design Considerations for Contactless Power Transfer Quadrature Pick-ups [J].IEEE Trans. on Ind. Electron., 2013,60 ( 1 ) : 400-409.
  • 8H Matsumoto, Y Neba, K Ishizaka, et al.Model for a Three- phase Contactless Power Transfer System[J].IEEE Trans. on Power Electron., 2011,26 (9) : 2676-2687.
  • 9Matsumoto H, Neba Y, Iura H, et al.Trifoliate Three-phase Contactless Power Transformer in Case of Winding- alignment[J].IEEE Trans. on Ind. Electron., 2014,61 ( 1 ) : 53-62.

二级参考文献4

共引文献73

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部