期刊文献+

Optical study of charge dynamics in CaCo_2As_2

Optical study of charge dynamics in CaCo_2As_2
下载PDF
导出
摘要 We present an infrared spectroscopy study of charge dynamics in CaCo_2As_2 single crystal. In this material, the optical conductivity can be described by two Drude components with different scattering rates(1/τ): a broad incoherent background and a narrow Drude component. By monitoring the temperature dependence, we find that only the narrow Drude component is temperature-dependent and determines the transport properties. Especially a Fermi liquid behavior of carriers is revealed by the T^2 behavior in the dc resistivity ρ_n and scattering rate 1/τ_n, indicating a coherent nature of quasiparticles in the narrow Drude subsystem. We present an infrared spectroscopy study of charge dynamics in CaCo_2As_2 single crystal. In this material, the optical conductivity can be described by two Drude components with different scattering rates(1/τ): a broad incoherent background and a narrow Drude component. By monitoring the temperature dependence, we find that only the narrow Drude component is temperature-dependent and determines the transport properties. Especially a Fermi liquid behavior of carriers is revealed by the T^2 behavior in the dc resistivity ρ_n and scattering rate 1/τ_n, indicating a coherent nature of quasiparticles in the narrow Drude subsystem.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期1-4,共4页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821400, 2012CB921302, and 2015CB921303) the National Natural Science Foundation of China (Grants Nos. 11274237, 91121004, 51228201, and 11004238) the support of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
关键词 电荷变化 光学 输运性质 温度依赖性 监测温度 费米液体 散射率 非相干 infrared spectroscopy optical conductivity Fermi liquid
  • 相关文献

参考文献27

  • 1Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 214515.
  • 2Rotter M, Tegel M ancl Johrendt D 2008 Phys. Rev. Lett. 101 107006.
  • 3Doiron-Leyraud N, Auban-Senzier P, Ren6 de Cotret S, Bourbonnais C, J6rome D, Bechgaard K and Taillefer L 2009 Phys. Rev. B 80 214531.
  • 4Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tokeya H, Hirata K, Terashima T and Matsuda Y 2010 Phys. Rev. B 81 184519.
  • 5Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H 2015 Phys. Rev. X 5 031035.
  • 6Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chert G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001.
  • 7Malaeb W, Yoshida T, Fujimori A, Kubota M, Ono K, Kihou K, Shi- rage P M, Kito H, Iyo A, Eisaki H, Nakajima Y, Tamegai T and Arita R 2009 JPSJ 78 123706.
  • 8Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81.
  • 9Yin Z P, Haule K and Kotliar G 2011 Nat. Mater. 10 932.
  • 10Misawa T, Nakamura K and Imada M 2012 Phys. Rev. Lett. 108 177007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部