摘要
We experimentally demonstrate the Coulomb explosion process of CS_2 molecule under a near-infrared(800 nm)intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S~+, S^(2+), CS~+, and CS^(2+)by breaking one C–S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions CS_2^(k+)(k = 2–4) by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions CS_2^(k+) decreases with the increase of the charge number k.These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area.
We experimentally demonstrate the Coulomb explosion process of CS_2 molecule under a near-infrared(800 nm)intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S~+, S^(2+), CS~+, and CS^(2+)by breaking one C–S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions CS_2^(k+)(k = 2–4) by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions CS_2^(k+) decreases with the increase of the charge number k.These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.51132004 and 11474096)
the Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)
the support of the NYU-ECNU Institute of Physics at NYU Shanghai,China