期刊文献+

Characterization of atomic-layer MoS_2 synthesized using a hot filament chemical vapor deposition method 被引量:1

Characterization of atomic-layer MoS_2 synthesized using a hot filament chemical vapor deposition method
下载PDF
导出
摘要 Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions. Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期423-428,共6页 中国物理B(英文版)
基金 Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY16F040003 and LY16A040007) the National Natural Science Foundation of China(Grant Nos.51401069 and 11574067)
关键词 atomic-layer MoS2 hot filament chemical vapor deposition high-resolution transition electron microscopy(HRTEM) x-ray photoelectron spectroscopy(XPS) atomic-layer MoS2 hot filament chemical vapor deposition high-resolution transition electron microscopy(HRTEM) x-ray photoelectron spectroscopy(XPS)
  • 相关文献

参考文献21

  • 1Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater 24 2320.
  • 2Xia H D, Li H P, Lan C Y, Li C, Deng G L, Li J F and Liu Y 2015 Chin. Phys. B 24 084206.
  • 3Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102.
  • 4Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494.
  • 5Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X and Jia Y 2015 Chin. Phys. B 24 026501.
  • 6Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 8871.
  • 7Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, Palacio G S, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R and Bartels L 2014Adv. Mater. 26 1399.
  • 8Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615.
  • 9Huang K J, Zhang J Z, Liu Y J and Wang L L 2014 Senso Actuat. B: Chem. 194 303.
  • 10Song J G, Park J, Lee W, Choi T, Jung H, Lee C W, Hwang S H, My- oung J M, Jung J H, Kim S H, C L M and Kim H 2013 ACS Nano 7 11333.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部