期刊文献+

介电泳技术在生物信号检测和相分离阻变材料中的应用 被引量:1

Applications of dielectrophoresis in biologic signal detection and phase-separated resistance-switching materials
原文传递
导出
摘要 介电泳是操纵微纳米级粒子的强大工具,已经在生物细胞和无机微粒的分离、检测、操控方面得到了广泛的应用.本文突破对介电泳技术的传统定位,简要介绍介电泳效应的两例新的应用.首先是和新兴的纳米孔技术结合,利用介电泳的富集效应,在微纳环境下对单分子行为进行操控,解决目前纳米孔基因测序面临的通量低等难题.其次在某些相分离固体材料中,介电泳可以通过调节电子相的几何结构引起渗流,从而实现电致阻变效应.这些研究不仅扩大了介电泳技术的应用范围,且具有多学科技术交叉融合的特点,为生物检测技术的开发创新以及新型功能材料的设计提供了新的思路. Dielectrophoresis has been used as an effective and versatile technique for trapping and sorting a wide variety of suspended materials ranging from colloidal particles to biological cells. Here two new examples about dielectrophoresis applications have been introduced beyond the traditional overview. First, combined with nanopore sensors, dielectrophoresis has been used to enrich the single molecular into nanopore, which may resolve the low throughput problem of nanopore. Next, in correlated electronic materials with various competing interactions, dielectrophoresis can reform the cluster structures of coexisting electronic phases, and lead to colossal electroresistance. These studies not only expand the applications of dielectrophoresis, but also promote the crossover between different disciplines, which can bring new ideas on the development of biological technique and the design of new functional materials.
作者 武灵芝 董帅
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第3期235-242,共8页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:51322206)资助项目
关键词 介电泳技术 生物分子操纵 纳米孔 相分离锰氧化物 阻变材料 dielectrophoresis biologic molecule manipulation nanopore phase-separated manganites resistance-switching materials
  • 相关文献

参考文献32

  • 1Pohl H A. Dielectrophoresis:The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge, New York:Cambridge University Press, 1978. 350-432.
  • 2Hughes M P. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis, 2002, 23:2569-2582.
  • 3Morgan H, Green N G. AC Electrokinetics:Colloids and nanoparticles. Baldock:Research Studies Press Ltd., 2003.
  • 4Pethig R, Huang Y, Wang X B, et al. Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J Phys D, 1992, 25:881-888.
  • 5Pohl H A. The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys, 1951, 22:869-871.
  • 6Yahya W N, Kadri N A, Ibrahim F. Cell patterning for liver tissue engineering via dielectrophoretic mechanisms. Sensors, 2014, 14:11714-11734.
  • 7Jubery T Z, Srivastava S K, Dutta P. Dielectrophoretic separation of bioparticles in microdevices:A review. Electrophoresis, 2014, 35:691-713.
  • 8Chuang C H, Wu T F, Chen C H, et al. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations. Lab Chip, 2015, 15:3056-3064.
  • 9Jones T B. Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol, 2003, 22:33-42.
  • 10Berger S D, McGruer N E, Adams G G. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis. Nanotechnology, 2015, 26:155602.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部