期刊文献+

氮掺杂石墨烯@碳纳米纤维的原位制备及其电催化氧还原性能 被引量:6

In-situ Preparation and Electrocatalytic Oxygen Reduction Performance of N-doped Graphene@CNF
下载PDF
导出
摘要 结合静电纺丝和热处理技术,在含钴碳纳米纤维上原位生长了氮掺杂石墨烯,制备了三维互通纤维网结构。研究了钴含量对产物氧还原活性的影响。结果表明:氮掺杂石墨烯的生成和钴的引入均显著提高了电催化活性。纺丝液中六水合硝酸钴与聚丙烯腈的质量比为1:10时,获得的催化剂活性最优,起始电势为0.84 V(vs RHE),反应为近四电子路径,具有比铂碳更好的稳定性和耐甲醇毒化能力。三维互通结构促进了电子和质子传输,并能提供更多的活性位点,提高电催化活性。这种方法也可用于设计其它三维互通的纤维复合物,在能源与环境领域具有更广泛的应用前景。 By combining the techniques of electrospinning and heat-treatment, N-doped graphene(NG) were in situ grown on cobalt-containing electronspun carbon nanofibers(CNF) to form three-dimensional(3D) interconnected fiber network structure. The effect of cobalt(Co) content on the oxygen reduction reaction(ORR) activity of the as-prepared samples was studied. It is demonstrated that both the formation of NG and introduction of Co significantly increase the electrocatalytic activity. The hybrid shows optimized ORR performance when the weight ratio of Co(NO3)2·6H2O to PAN in electronspun solution is 1: 10. The as-obtained catalyst exhibits superior ORR catalytic performance with onset potential of 0.84 V(vs RHE), near four electron transfer pathway. In addition, the sample presents better stability and methanol tolerance than Pt/C in alkaline media. As-obtained interconnected fiber networks facilitate electron and mass transfer to provide more active sites, favorable to the enhancement of electrocatalytic activity. This strategy is also available to prepare other 3D interconnected fiber composites for using in energy and environmental fields.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第4期351-357,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(51203182 51173202) 湖南省优秀博士学位论文获得者科研项目(YB2014B004) 低维量子物理国家重点实验室(清华大学)开放基金(KF201312) 广西信息材料重点实验室(桂林电子科技大学)开放基金(桂能科1210908-01-K)~~
关键词 氧还原反应 氮掺杂石墨烯 原位制备 三维互通纤维网 oxygen reduction reaction N-doped graphene in situ-preparation 3D interconnected fiber network
  • 相关文献

参考文献5

二级参考文献107

  • 1王永芝,杨清彪,杜建时,王书刚,李耀先,王策.电纺丝技术——一种高效低耗的纳米纤维制备方法[J].化工新型材料,2005,33(6):12-14. 被引量:8
  • 2Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878-1889.
  • 3Oh, S.; Black, R.; Pomerantseva, E.; Lee, J.; Nazar, L. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium2 batteries. Nat. Chem. 2012, 4, 1004-1010.
  • 4Kiros, Y.; Pirjamali, M.; Bursell, M. Oxygen reduction electrodes for electrolysis in chlor-alkali cells. Electrochim.Acta. 2006, 51, 3346-3350.
  • 5Tiwari, J.; Tiwari, R.; Singh, G.; Kim, K. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553-578.
  • 6Liang, H.; Wei, W.; Wu, Z.; Feng, X.; M/illen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.
  • 7Vujkovir, M.; Gavrilov, N.; Patti, I.; Krstir, J.; Travas- Sejdic, J.; Girid-Marjanovid, G.; Mentus, S. Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment. Carbon 2013, 64, 472-486.
  • 8Topalov, A.; Katsounaros, I.; Auinger, M.; Cherevko, S.; Meier, J.; Klemm, S.; Mayrhofer, K. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Ed. 2012, 51, 12613-12615.
  • 9Nesselberger, M.; Roefzaad, M.; Hamou, R.; Biedermarm, P.; Schweinberger, F.; Kunz, S.; Schloegl, K.; Wiberg, G.; Ashton, S.; Heiz, U. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919-924.
  • 10Wu, J.; Yang, H. Platinum-based oxygen reduction electro- catalysts. Acc. Chem. Res. 2013, 46, 1848-1857.

共引文献45

同被引文献42

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部