期刊文献+

铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能 被引量:7

p-type CuI Films Grown by Iodination of Copper and Their Application As Hole Transporting Layers for Inverted Perovskite Solar Cells
下载PDF
导出
摘要 γ相碘化亚铜(γ-Cu I)是一种带隙为3.1 e V的p型半导体材料,适合应用于发光二极管和太阳能电池等光电子器件。本研究利用简单的铜膜碘化法制备了Cu I薄膜,探究了碘化时间、温度及铜/碘比等生长条件对其透明导电性能的影响。在最优碘化时间(30 min)和碘化温度(120℃)下,制备出了高透过率(可见光范围>75%)、导电性能好(电阻率4.4×10-2?·cm)的Cu I薄膜。利用Cu I薄膜作为空穴传输层,组装了Cu I/CH3NH3Pb I3/PCBM反型平面钙钛矿电池,获得的最高光电转换效率为8.35%,讨论了Cu I薄膜透明导电性能对钙钛矿电池光电转换效率的影响机理。 γ-phase copper iodide(γ-Cu I) is a wide bandgap p-type semiconductor with a band gap of 3.1 e V, which is suitable for optoelectronic devices like light-emitting diodes and solar cells. A simple and convenient method of iodination of copper film to prepare Cu I film was reported. The effects of iodination time, reaction temperature, and copper/iodine ratio on the transparent and conductive properties of Cu I film were explored. Cu I films with high transmittance over 75% in the visible range and low resistivity of 4.4×10^(-2) Ω·cm were grown under the optimized iodination time(30 min) and iodination temperature(120℃). The Cu I films were adopted as hole transporting layers for Cu I/CH3NH3 Pb I3/PCBM inverted planar perovskite solar cell and a maximum photovoltaic efficiency of 8.35% was obtained. The influences of the transparent and conductive properties of Cu I films on the solar cell photovoltaic efficiency were also discussed.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第4期358-364,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(51472110) 山东省自然科学基金(JQ201214 2014ZRB01A47)~~
关键词 碘化亚铜 铜膜碘化法 透明导电 反型钙钛矿太阳能电池 CuI iodination of copper transparent and conductive property inverted perovskite solar cell
  • 相关文献

参考文献2

二级参考文献57

  • 1KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Jour- nal of the American Chemical Society., 2009, 131(17): 6050-6051.
  • 2LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science., 2012, 338(6107): 643-647.
  • 3BURSCHKA J, PELLET N, MOON S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature., 2013,499(7458): 316-319.
  • 4COUZIN-FRANKEL J. Breakthrough of the year 2013. cancer immunotherapy. Science, 2013, 342(6165): 1432-1433.
  • 5ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly ef- ficient perovskite solar cells. Science, 2014, 345(6196): 542-546.
  • 6YANG W S, NOH J H, JEON N J, et al. High-performance photo- voltaic perovskite layers fabricated through intramolecular ex- change. Science, 2015,348(6240): 1234-1237.
  • 7GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506-514.
  • 8OUYANG M, BAI R, CHEN L, et al. Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition. The Journal of Physical Chemistry C, 2008, 112(30): 11250-11256.
  • 9STRANKS S D, EPERON G E, GRANC1NI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal tri- halide perovskite absorber. Science, 2013, 342(6156): 341-344.
  • 10YANG Y, WANG W. Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3. Journal of PowerSources, 2015,293: 577-584.

共引文献11

同被引文献29

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部