期刊文献+

基于大数据的小麦蚜虫发生程度决策树预测分类模型 被引量:3

Decision tree predictive classification model on the occurrence degree of wheat aphids based on big data
下载PDF
导出
摘要 小麦蚜虫是危害小麦的主要害虫。其发生程度预测特别是短期预测一直是植物保护领域难以解决的科学问题。传统预测方法通常仅采用温湿度,预测结果与实际发生匹配度不高。基于大数据的理念和数据挖掘技术,通过对2003-2013年小麦蚜虫发生程度与瓢虫、寄生蜂、日最高气压、日照时数等18种变量关系的决策树分析,构建了分类模型。经分析发现,日照时数与小麦蚜虫的发生程度关联度最高,其次是天敌瓢虫。该模型置信度为91.49%,且运行稳健。 Wheat aphids are the main pests of wheat crops. The monitoring and forecasting of their occurrence degree, especially the short-term occurrence degree, is much difficult. Many traditional predictions rely only on temperature and humidity, so the match degree to the actual occurrence value is low. Based on the concept of big data and data mining programs, the predictive classification model was established by means of the decision tree analysis of the relationship between the occurrence degree of aphids and up to 18 variables. It was found out that the duration of sunshine has the highest degree of relevance to the forecasting level of aphids, followed by ladybird. The confidence coefficient of the model that runs steadily in the experiment is 91.49%.
出处 《大数据》 2016年第1期59-67,共9页 Big Data Research
基金 山东省农业重大应用技术创新课题基金资助项目~~
关键词 小麦蚜虫 农业大数据 决策树 分类模型 wheat aphids agricultural big data decision tree classification model
  • 相关文献

参考文献17

  • 1HHLLMANN C A, FOPPEN R P B, VAN TURNHOUT C A M, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014, 511(7509): 341-343.
  • 2SIRAJ A S, SANTOS-VEGA M, BOUMA M J. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia[J]. Science, 2014, 343(6175): 1154-1158.
  • 3牟吉元等.农业昆虫学[M].北京:中国农业科技出版社.1995.121-168.
  • 4迟宝杰,朱英菲,Vandereycken Axel,陈巨莲,刘勇.麦长管蚜及其天敌的种群发生和食物网分析[J].应用昆虫学报,2014,51(6):1496-1503. 被引量:4
  • 5PIYARATNE M K D K, ZHAO H Y, HU Z Q, et al. A model to analyze weather impact on aphid population dynamics: an application on swallow tail catastrophe model[J]. European Scientific Journal, 2014, 10(18): 1857-7431.
  • 6DEBORAH J T, ART J D, FRAN~OISE A B, et al. Forecasting aphid outbreaks and epidemics of cucumber mosaic virus in lupin crops in a Mediterranean-type environment[J]. Virus Research, 2004, 100(1): 67-82.
  • 7LUO J H, HUANG W J, ZHAO J L, et al. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data[J]. Optik, 2014, 125(19): 5660-5665.
  • 8李文峰,尹彬,曹志伟,杨晓莉,曹永周.许昌市小麦蚜虫种群变化规律及气象预测模型[J].河南农业科学,2011,40(3):81-84. 被引量:14
  • 9QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1985, 1(1): 81-106.
  • 10QUINLAN J R. C4.5: Programs for Machine Learning[M]. Burlington: Morgan Kaufmanns Publishers, 1993: 69-81.

二级参考文献53

  • 1林茂灿,颜景助,孙国华.北京话两字组正常重音的初步实验[J].方言,1984,6(1):57-73. 被引量:82
  • 2丁岩钦.论害虫种群的生态控制[J].生态学报,1993,13(2):99-106. 被引量:167
  • 3陈怀亮,张弘,李有.农作物病虫害发生发展气象条件及预报方法研究综述[J].中国农业气象,2007,28(2):212-216. 被引量:81
  • 4李淑华.气候变化对中国农业病虫害的影响[C] //邓根云.气候变化对中国农业的影响.北京:北京科学技术出版社,1993:223-234.
  • 5Drake V A.The influence of weather and climate on agriculturally important insects:an Australian perspective[J].Australian Journal of Agricultural Research,1994,45(3):487-509.
  • 6Peter Stone.Layered learning in Multi-agent Systems[D].ComputerScience Department,Carnegie Mellon University,Pittsburgh,PA.Dec,1998.
  • 7K Kostas,Hu Huosheng.Reinforcement Learning and Co-operation in a Simulated Multi-agent System[C].Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,Japan:IEEE,1999.990-995.
  • 8K Endo,etal.Team Description for "DONGURI"[C].HiroKi K RoboCup-98:Robot Soccer WorldCup II,Berlin:Springer,1998,305-308.
  • 9Jinyi Yao,Jiang Chen,Zengqi Sun.An application in RoboCup combining Q-learning with Adversarial planning[D].Tsinghua University,2002.
  • 10J R Quinlan.Induction Decision Tree[J].Machine Learning,1986.81-106.

共引文献423

同被引文献52

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部