期刊文献+

微型反应器中生物质甲醇催化转化制氢的研究

Study on Catalytic Conversion of Bio-methanol Producing Hydrogen in a Miniature Reactor
下载PDF
导出
摘要 笔者创新研制了一种多层板式微型制氢反应器,集甲醇催化燃烧、重整和原料预热于一体;通过计算物流速度分布,合理地设计了单板结构和几何尺寸;反应器依靠液体甲醇的催化燃烧实现水蒸汽重整制氢过程自热运行。考察了反应器启动、变载过程以及稳态性能和寿命,结果表明,当温度为320℃,空速为1600 h-1,水醇比为1.2时,甲醇转化率为100%,重整气中H274.46%,CO224.17%,CO 1.37%;重整腔甲醇空速为1350~1600 h-1,燃烧腔进料量为每min 0.158 m L,反应器可连续运行60 h,甲醇转化率在98%以上;反应器能量效率最高为45%,最大产氢量接近10.74 L·h-1。 A novel multi-plate miniature reactor was designed,which combined hydrogen production with the catalytic combustion of methanol,steam reforming and preheating. The structure and geometry dimension of each plate were designed by computing the flow velocity. Based on the catalytic combustion of bio-methanol,the hydrogen production through steam reforming was realized in self-heating-sustain,i. e. without any external heating during the operating process. The starting up of the system,the process of loading variation,stead-state performance,and the working life of reactor,were investigated.The result showed that the methanol conversion could reach as high as 100% under condition of above 320 ℃,methanol gas velocity of 1600 h- 1,and water/methanol molar ratio of 1. 2. The reformed gas steam contained 74. 46% of H2,24.17% of CO2,and 1. 37% of CO. The system reactor could continuous operate for 60 h under condition of 1350 ~ 1600 h- 1of methanol gas velocity in gas reforming space and the loading velocity of 0. 158 m L·min- 1in combustion space,and obtained 98% of methanol conversion rate,and hydrogen production was about 10. 74 L·h- 1.
出处 《中国沼气》 北大核心 2016年第2期9-12,共4页 China Biogas
基金 国家自然科学基金面上项目(21376237 21076206) 辽宁省教育厅科学研究一般项目(L2014157)
关键词 微型反应器 制氢 催化转化 甲醇水蒸汽重整 氢源 miniature reactor hydrogen production catalytic conversion methanol steam reforming hydrogen sources
  • 相关文献

参考文献1

二级参考文献13

  • 1Srinivasant S, Velve O A, Manko D J, Parthasarathy A, Appleby A J.High energy efficiency and high power density PEMFC-electrode kinetics and mass transport.J. Power Sources,1991,36(3):299-320.
  • 2Amphlett J C, Mann R F, Weir R D. Hydrogen production by the catalytic steam reforming of methanol. part 3:kinetics of methanol decomposition using C18HC catalyst.Can.J.Chem. Eng.,1988,66(6):950-956.
  • 3Emonts B, Hansen J B, Jrgensen S, H(o)hlein B, Peters R.Compact methanol reformer test for fuel-cell powered light-duty vehicles.J. Power Sources,1998,71(1-2):288-293.
  • 4Wies W, Emonts B, Peters R. Methanol steam reforming in a fuel cell drive system.J. Power Sources,1999,84(2):187-193.
  • 5Iwasa N, Masuda S, Ogawa N, Takezawa N. Steam reforming of methanol over Pd/ZnO:effect of the formation of PdZn alloys upon the reaction.Appl. Catal. A, 1995,125(1):145-157.
  • 6Breen J P, Meunier F C, Ross J R H. Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst.Chem. Commun., 1999,22:2247-2248.
  • 7Amphlett J C, Creber K A M, Davis J M, Mann R F, Peppley B A, Stokes D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. Int. J. Hydrogen Energy, 1994,19(2):131-137.
  • 8Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N. Highly selective supported Pd catalysts for steam reforming of methanol.Catal. Letters,1993,19:211.
  • 9Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst.Appl. Catal. A,1982,2(6):363-366.
  • 10Jiang C J, Trimm D L, Wainwright M S, Cant N W. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst.Appl. Catal. A, 1993,97(2):145-158.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部