期刊文献+

形变热处理对316L奥氏体不锈钢晶界特征分布的影响 被引量:7

Effect of thermo-mechanical processing on grain boundary character distribution of 316L austenitic stainless steel
原文传递
导出
摘要 采用5%的单向压缩与1000℃退火的形变热处理工艺,对316L奥氏体不锈钢的晶界特征分布进行了优化,并且通过定位观察的方法研究了晶界特征分布优化的机理。结果表明,随着退火时间的增加,特殊晶界比例逐渐增加;当退火时间达到90 min时,试样的特殊晶界比例最高(69.5%),并且得到了打断的大角度随机晶界网络。晶界特征分布优化的机理是,小变形试样在退火过程中发生了局部再结晶,首先产生了以特殊晶界等低能量晶界为主的小晶粒群;之后小晶粒群中能量较高的大角度晶界开始迁移并消失,最终材料的特殊晶界比例得到了提高。 Optimization of grain boundary character distribution( GBCD) was carried out on 316 L austenitic stainless steel with thermomechanical processing( TMP),which was performed by 5% unidirectional compression and subsequent annealing at 1000 ℃. In addition,the mechanism was investigated by localization observation. The results show that the fraction of low-Σ boundaries increases with the increase of annealing time. The highest fraction of low-Σ boundaries( about 69. 5%) associating with interrupted network of large angle grain random boundaries is obtained when the annealing time is 90 min. The mechanism of GBCD is investigated that the local recrystallization occurs in the small deformation specimen during the annealing process. The low energy boundaries such as low-Σ boundaries are nucleated during the recrystallization of small grains group. And then the high energy boundaries such as large angle grain random boundaries migrates and disappears. It leads to the increase fraction of special boundaries.
出处 《金属热处理》 CAS CSCD 北大核心 2016年第4期55-58,共4页 Heat Treatment of Metals
基金 国家高技术研究发展计划(863计划)(2012AA03A507)
关键词 形变热处理 晶界特征分布 特殊晶界 奥氏体不锈钢 thermo-mechanical processing grain boundary character distribution special boundaries austenitic stainless steel
  • 相关文献

参考文献13

  • 1Watanabe T. Approach to grain boundary design for strong and ductile polycrystals[ J]. Res Mechanica, 1984, 11 ( 1 ) : 47-84.
  • 2Shimada M, Kokama H, Wang Z J. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[ J]. Acta Materialia, 2002, 50(9) : 2331-2341.
  • 3Palumbo G, Erb U. Enhancing the operating life and performance of lead-acid batteries via grain-boundary engineering [ J]. MRS Bulletin, 1999, 24(11) : 27-32.
  • 4Xia S, Zhou B, Chen W. Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in alloy 690 [ J ]. Journal of Materials Science, 2008, 43 (9) : 2990-3000.
  • 5Crawford D C, Was G S. The role of grain boundary misorientation in intergranular cracking of Ni-16Cr-9Fe in 360 ℃ argon and high-purity water[ J ]. Metallurgical Transactions A, 1992, 23 (4) : 1195-1206.
  • 6Randle V, Owen G. Mechanisms of grain boundary engineering [ J ]. Acta Materialia, 2006, 54(7) : 1777-1783.
  • 7Wasnik D N, Kain V, Samajdar I, et al. Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries[ J. Acta Materialia, 2002, 50(18): 4587-4601.
  • 8Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [ J ]. Acta Materialia, 1999, 47(15): 4171-4185.
  • 9Tomozawa M, Miyahara Y, Kako K. Solute segregation on ∑3 and random grain boundaries in type 316L stainless steel [ J ]. Materials Science and Engineering: A, 2013, 578: 167-173.
  • 10Thaveeprungsriporn V, Was G S. The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 ℃ [ J]. Metallurgical and Materials Transactions A, 1997, 28(10) : 2101-2112.

二级参考文献77

共引文献30

同被引文献53

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部