期刊文献+

发动机箱体关键工序切削仿真及参数优化 被引量:2

Study on Machining Simulation and Cutting Parameters Optimization about Key Process of Engine Box
下载PDF
导出
摘要 材料不同的特性会导致加工过程中2个零件的切削力、切削温度以及切削变形不同,从而影响同轴度,因此,选择合理的切削参数是关键。针对某型号发动机,为了优化其切削参数,结合镗瓦孔工序加工要求和工艺特点,建立了镗瓦孔工序的切削力模型和切削温度的经验公式。以弹塑性有限元理论为基础,建立了基于镗瓦孔工序中2种材料的三维镗削模型,应用Deform-3D有限元软件,完成了2种材料镗削过程的切削仿真,获得了材料的应力应变分布、切削力切削变形曲线和工件温度场分布及变化曲线,通过对比分析,得到了合理的切削参数。提出了镗瓦孔工序中切削参数的优化方案,仿真结果证明了该方案的正确性。 Different material property causes the different cutting force, cutting temperature and cutting deformation and this could affect concentricity. Therefore, a reasonable choice of cutting parameters is very important. Combined with the processing requirement and characteristic of the main bearing bores boring process. Base on the elastic-plastic finite element theory, establish the 3D model of the two parts. Applying Deform-3D finite element software completes the cutting simula tion of the two different material. Obtain the stress distribution, strain distribution, cutting force curve, work piece deform ation curve and temperature distribution curve of the two material. Through the comparative analysis, identify the impact on processing accuracy of the different material. The variation law of cutting force, feed temperature and cutting temperature under different cutting speed, cutting depth and feed rate are obtained by simulation. Finally, a cutting parameters optimiza- tion program of boring main bearing bore is proposed.
作者 周常春
出处 《新技术新工艺》 2016年第4期36-41,共6页 New Technology & New Process
关键词 主轴瓦孔 镗削加工 有限元仿真 切削参数优化 main bearing bore, boring, finite element simulation, cutting parameter optimization
  • 相关文献

参考文献5

二级参考文献29

  • 1王素玉,艾兴,赵军,李作丽,孟辉.切削速度对工件表面残余应力的有限元模拟[J].工具技术,2005,39(9):33-36. 被引量:25
  • 2NG E-G, SZABLEWSKI D, DUMITRESCU M, et al.High speed face milling of a aluminum silicon alloy casting [J]. Annals of the CIRP, 2004, 53(1) : 69 - 72.
  • 3YANG Xiao-ping, LIU C R. A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method [J]. International Journal of Mechanical Sciences, 2002,44(4) : 703 - 723.
  • 4SHATLA M, KERK C, ALTAN T. Process modeling in machining, part 2: validation and applications of the determined flow stress data [J]. International Journal of Machine Tools & Manufacture, 2001,41 (11) :1659-1680.
  • 5OZEL T, ALTAN T. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling [J]. International Journal of Machine Tools & Manufacture,2000, 40(5) : 713 - 738.
  • 6OZEL T, ALTAN T. Determination of workpiece flow stress and friction at chip-tool contact for high-speed cutting [J]. International Journal of Machine Tools & Manufacture, 2000, 40(1) :133 - 152.
  • 7BAKER M. An investigation of the chip segmentation process using finite elements [J]. Technishe Mechanik,2003, 23(1):1-9.
  • 8LIN Zone-ching, YANG Yuung-der. Three-dimensional cutting process analysis with different cutting velocities[J]. Journal of Materials Processing Technology, 1997,70(1) :22 - 33.
  • 9FILOM D G, KOMANDURI R, LEE M. High speed machining of metals [J]. Annals Review of Material Science, 1984, 14:231-278.
  • 10ALBERT J S, HENRY T Y. Experiment and finite element predictions of residual stress due to orthogonal metal cutting [J]. International Jouranl for Numerical Methods in Engineering,1993, 36(9) : 1487-1507.

共引文献58

同被引文献15

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部