期刊文献+

内蒙古电力数据仓库的应用 被引量:3

Application of Inner Mongolia electric power data warehouse
下载PDF
导出
摘要 随着电力信息化的发展,电力数据的积累速度越来越快,如何使大数据产生价值、为公司科学发展提供支持的议题被越来越多地提及。内蒙古电力公司从2011年开始建设一体化平台数据中心,当前已经完成了公司各业务口的数据集成工作,为数据利用提供了基础。依据建设的一体化生产经营决策分析系统建设情况,从应用需求、应用技术、数据分析挖掘3个方面介绍了内蒙古电力公司在大数据背景下的数据仓库应用的探索与尝试。总结了建设成果与建设经验,得出做好分析展现应用的关键是需求管理,核心技术是数据挖掘的结论。 With the development of electric power information, the accumulation of power data is more and more fast, and the issue of how to make big data to support the scientific development of the company is increasingly mentioned. In the year of 2011, Inner Mongolia Power Company started to build integrated platform data center. The company has completed the company's business data integration work, and provided a basis for the use of data.Based on the construction of integrated production and management decision-making analysis system, the Inner Mongolia Power Company in the data warehouse application exploration and attempt was introduced from the application needs, application technology, data analysis and mining. Summary of the results and experience of construction shows that the key of application analysis is demand management and the technology is datamining.
作者 张瑜 潘红芳
出处 《电信科学》 北大核心 2016年第4期175-180,共6页 Telecommunications Science
关键词 电力大数据 数据中心 数据仓库 electric power big data data center data warehouse
  • 相关文献

参考文献10

  • 1涂子沛.大数据:正在到来的数据革命[M].桂林:广西师范大学出版社,2013.
  • 2TU Z P.The big data revolution[M].Guilin:Guangxi Normal University Press,2013.
  • 3ZHAO G.Big data technology and application practice[M].Beijing:Publishing House of Electronics Industry,2013.
  • 4李建中,刘显敏.大数据的一个重要方面:数据可用性[J].计算机研究与发展,2013,50(6):1147-1162. 被引量:260
  • 5孙柏林.“大数据”技术及其在电力行业中的应用[J].电气时代,2013(8):18-23. 被引量:67
  • 6SUN B L.“Big data”technology and its application in electric power industry[J].Electrical Age,2013(8):18-23.
  • 7大数据与电力企业[J].电力信息化,2012,10(8):7-7. 被引量:16
  • 8WANG J Y.Big data and electric power enterprises[J].Electric Power Information Technology,2012,10(8):7.
  • 9中国电机工程学会电力信息化专业委员会.中国电力大数据发展白皮书[R].2013.
  • 10Electric Information Professional Committee of China Electrical Engineering Society.China electric power big data development white paper[R].2013.

二级参考文献159

  • 1Redman T. The impact of poor data quality on the typical enterprise [J]. Communications of the ACM, 1998, 41(2) : 79-82.
  • 2Miller D W, Yeast J D, Evans R L. Missing prenatal records at a birth center: A communication problem quantified [C] // Proc of AMIA Annual Syrup Proceedings. Maryland: American Medical Informatics Association, 2005 : 535-539.
  • 3Swartz N. Gartner warns firms of 'dirty data' [J]. Information Management Journal, 2007, 41(3): 6.
  • 4Kohn L T, Corrigan J M, Donaldson M S. To Err is Human: Building a Safer Health System [M]. Washington: National Academies Press, 2000.
  • 5Eckerson W. Data Warehousing Special Report Data quality and the bottom line [R]. Applications Development Trends, 2002.
  • 6English L P. Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing Profits [M]. New York: Wiley, 1999.
  • 7Woolsey B, Schulz M. Credit card statistics, industry facts, debt statistics [OL]. [2013-04-20 ]. http://www. creditcards, com/credit-card-news/credit-card-indust ry-facts- personal-debt-statistics-1276, php.
  • 8Shilakes C, Tylman J. Enterprise information portals [R]. New York: Merrill Lynch, 1998.
  • 9Rahm E, Do H H. Data cleaning:Problems and current approaches [J]. IEEE Data Engineering Bulletin, 2000, 23 (4): 3-13.
  • 10Dong X L, Berti-Equille L, Srivastava D. Integrating conflicting data:The role of source dependence[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 550-561.

共引文献341

同被引文献22

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部