期刊文献+

不同浓度七氟烷麻醉与不同刺激电压对脊髓手术中运动诱发电位波幅和潜伏期的影响 被引量:4

Influence of sevoflurane concentration and stimulation voltage on motor evoked potentials in intraspinal tumor surgery
下载PDF
导出
摘要 目的:评价七氟烷在不同呼气末浓度和不同刺激电压时对脊髓手术中运动诱发电位(motor evoked potentials,MEPs)监测的影响,为临床需要进行MEPs监测手术的麻醉用药提供选择依据。方法:选择年龄18-65岁、ASAⅠ-Ⅱ级、需择期行胸腰段脊髓肿瘤切除手术的患者48例。常规全身麻醉(全麻)诱导后,在手术重要操作步骤开始前分别测定刺激电压为300 V、400 V、500 V、600 V时和七氟烷呼气末浓度分别为0.0%、0.5%、1.0%、1.5%时的MEPs波幅和潜伏期。全麻期间瑞芬太尼的输注速度维持在0.2μg/(kg·min),适当调整丙泊酚泵注速度维持脑电双频谱指数(bispectral index,BIS)在30-50范围内。结果:七氟烷呼气末浓度和电生理监测仪的刺激电压显著影响MEPs的波幅,在同一刺激电压下,随七氟烷呼气末浓度的提高,MEPs的波幅下降,呼气末浓度1.5%时MEPs波幅(左侧20.50μV、70.71μV、135.97μV、190.00μV,右侧14.29μV、50.71μV、73.10μV、77.50μV)明显低于呼气末浓度0.5%时MEPs波幅(左侧100.00μV、362.57μV、444.05μV、435.00μV,右侧115.00μV、207.15μV、258.34μV、358.50μV)以及0.0%时MEPs波幅(左侧143.00μV、388.10μV、484.53μV、500.00μV,右侧176.00μV、407.60μV、384.35μV、451.00μV),差异有统计学意义(左侧χ^2=27.46,P〈0.01,右侧χ^2=60.49,P〈0.01;左侧χ^2=20.73,P〈0.01,右侧χ^2=55.05,P〈0.01;左侧χ^2=34.25,P〈0.01,右侧χ^2=33.58,P〈0.01;左侧χ^2=28.61,P〈0.01,右侧χ^2=49.04,P〈0.01);MEPs的潜伏期也有延长,但结果差异无统计学意义(P=0.26)。同一呼气末浓度下,随刺激电压的增大,MEPs波幅增高,电压300 V时MEPs波幅(左侧143.00μV、100.00μV、61.50μV、20.50μV,右侧176.00μV、115.00μV、41.07μV、14.29μV)明显低于400 V时MEPs波幅(左侧388.10μV、362.57μV、198.81μV、70.71μV,右侧407.60μV、207.15μV、89.00μV、50.71μV)、500 V时MEPs波幅(左侧484.53μV、444.05μV、216.24μV、135.97μV,右侧384.35μV、258.34μV、187.50μV、73.10μV)与600 V时MEPs波幅(左侧500.00μV、435.00μV、344.00μV、190.00μV,右侧451.00μV、385.50μV、156.00μV、77.50μV),差异有统计学意义(左侧χ^2=45.55,P〈0.01,右侧χ^2=25.73,P〈0.01;左侧χ^2=46.67,P〈0.01,右侧χ^2=55.30,P〈0.01;左侧χ^2=47.36,P〈0.01,右侧χ^2=47.82,P〈0.01;左侧χ^2=38.67,P〈0.01,右侧χ^2=45.87,P〈0.01)。同一呼气末浓度下,随刺激电压的增大,MEPs的潜伏期逐渐缩短,电压300 V时MEPs潜伏期与400 V、500 V、600 V MEPs潜伏期比较差异有统计学意义(左侧F=7.50,P=0.01;右侧F=13.33,P〈0.01),但是这种潜伏期的变化没有临床意义。同一刺激电压下,随七氟烷呼气末浓度的提高,MEPs的成功率下降,呼气末浓度1.5%时MEPs的成功率(左侧43.8%、70.8%、77.1%、81.3%,右侧37.5%、60.4%、75.0%、66.7%)明显低于呼气末浓度0.5%时MEPs的成功率(左侧72.9%、89.6%、95.8%、95.8%,右侧66.7%、89.6%、95.8%、97.9%)及0.0%时MEPs的成功率(左侧79.2%、87.5%、95.8%、93.8%,右侧75.0%、95.8%、95.8%、95.8%),而同一呼气末浓度下,增大刺激电压可以提高MEPs的成功率,电压300 V时MEPs的成功率(左侧79.2%、72.9%、62.5%、43.8%,右侧75.0%、66.7%、60.4%、37.5%)明显低于400 V MEPs的成功率(左侧87.5%、89.6%、77.1%、70.8%,右侧95.8%、89.6%、79.2%、60.4%)、500 V MEPs的成功率(95.8%、95.8%、91.7%、77.1%,右侧95.8%、95.8%、81.3%、75.0%)以及600 V时MEPs的成功率(左侧93.8%、95.8%、89.6%、81.3%,右侧95.8%、97.9%、89.6%、66.7%),刺激电压600 V、七氟烷呼气末浓度为1.5%时MEPs的成功率与刺激电压300 V、七氟烷呼气末浓度为0.0%时MEPs的成功率差异无统计学意义(P=0.22)。结论:七氟烷对术中MEPs监测具有剂量依赖性抑制作用,但通过增加刺激电压,可以增大MEPs的波幅,缩短MEPs的潜伏期,提高MEPs监测的成功率,扩大了七氟烷在脊髓功能监测手术中的适用范围。 Objective: To evaluate the effects of increasing end-tidal concentrations of sevoflurane and increasing stimulation voltage on motor evoked potentials,so as to provide evidence in making anesthesia plan for intraspinal tumor surgery. Methods: In the study,48 patients scheduled to undergo intraspinal tumor surgery [American Society of Anesthesiology,( ASA) Ⅰ- Ⅱ,18- 65 years old] were enrolled.After general anesthesia induction,the patients were assigned to receive sevoflurane anesthesia of increasing end-tidal concentration in the sequence of 0. 0%,0. 5%,1. 0% and 1. 5% respectively,under a background of propofol and remifentanil. All the observations were done before the important steps of surgery. Remifentanil infusion rate was 0. 2 μg /( kg·min),while the propofol infusion rate was adjusted to maintain the bispectral index values within the range of 30- 50. At each concentration,4 stimulation voltages of 300 V,400 V,500 V and 600 V were employed to elicit motor evoked potentials( MEPs).The amplitude and latency of each MEP were compared. The success ratio was also recorded. Results:The concentration of sevoflurane and the stimulation voltage had impacts on the amplitude and latency of MEPs. Under each stimulation voltage,the MEPs amplitude decreased following increasing end-tidal sevoflurane concentrations,and significant differences were found in comparing 1. 5% sevoflurane( left20. 50 μV,70. 71 μV,135. 97 μV,190. 00 μV,right 14. 29 μV,50. 71 μV,73. 10 μV,77. 50 μV)with 0. 0% sevoflurane( left 143. 00 μV,388. 10 μV,484. 53 μV,500. 00 μV,right 176. 00 μV,407. 60 μV,384. 35 μV,451. 00 μV) and 0. 5% sevoflurane( left 100. 00 μV,362. 57 μV,444. 05μV,435. 00 μV,right 115. 00 μV,207. 15 μV,258. 34 μV,358. 50 μV),left χ^2= 27. 46,P〈0. 01,right χ^2= 60. 49,P〈0. 01; left χ^2= 20. 73,P〈0. 01,right χ^2= 55. 05,P〈0. 01; left χ^2=34. 25,P〈0. 01,right χ^2= 33. 58,P〈0. 01; left χ^2= 28. 61,P〈0. 01,right χ2= 49. 04,P〈0. 01;while there were no statistical differences in the latency changes( P = 0. 26). Under each end-tidal sevoflurane concentration,the MEPs amplitude increased following increasing stimulation voltages,and significant differences were found in comparing 300 V( left 143. 00 μV,100. 00 μV,61. 50 μV,20. 50μV,right 176. 00 μV,115. 00 μV,41. 07 μV,14. 29 μV) with 400 V( left 388. 10 μV,362. 57μV,198. 81 μV,70. 71 μV,right 407. 60 μV,207. 15 μV,89. 00 μV,50. 71 μV) and 500 V( left484. 53 μV,444. 05 μV,216. 24 μV,135. 97 μV,right 384. 35 μV,258. 34 μV,187. 50 μV,73. 10μV) and 600 V( left 500. 00 μV,435. 00 μV,344. 00 μV,190. 00 μV,right 451. 00 μV,385. 50μV,156. 00 μV,77. 50 μV),left χ2= 45. 55,P〈0. 01,right χ2= 25. 73,P〈0. 01; left χ2= 46. 67,P〈0. 01,right χ^2= 55. 30,P〈0. 01; left χ^2= 47. 36,P〈0. 01,right χ^2= 47. 82,P〈0. 01; left χ^2=38. 67,P〈0. 01,right χ^2= 45. 87,P〈0. 01; while the latencies were decreased,and significant differences were found in comparing 300 V with 400 V and 500 V and 600V( left F = 7. 50,P = 0. 01,right F = 13. 33,P〈0. 01),but the differences had little clinical significance. The success ratio decreased by increasing end-tidal sevoflurane concentration,and significant differences were found in comparing 1. 5%sevoflurane( left 43. 8%,70. 8%,77. 1%,81. 3%,right 37. 5%,60. 4%,75. 0%,66. 7%) with 0. 0%sevoflurane( left 79. 2%,87. 5%,95. 8%,93. 8%,right 75. 0%,95. 8%,95. 8%,95. 8%) and 0. 5%sevoflurane( left 72. 9%,89. 6%,95. 8%,95. 8%,right 66. 7%,89. 6%,95. 8%,97. 9%); the success ratio increased by increasing stimulation voltage,and significant differences were found in comparing300 V( left 79. 2%,72. 9%,62. 5%,43. 8%,right 75. 0%,66. 7%,60. 4%,37. 5%) with 400 V( left87. 5%,89. 6%,77. 1%,70. 8%,right 95. 8%,89. 6%,79. 2%,60. 4%) and 500 V( left 95. 8%,95. 8%,91. 7%,77. 1%,right 95. 8%,95. 8%,81. 3%,75. 0%) and 600 V( left 93. 8%,95. 8%,89. 6%,81. 3%,right 95. 8%,97. 9%,89. 6%,66. 7%),but there were no statistical differences in the success ratio of MEPs between the group with stimulation voltage of 600 V,end tidal sevoflurane concentration of 1. 5% and the group with stimulation voltage of 300 V,end tidal sevoflurane concentration of0. 0%( P = 0. 22). Conclusion: Sevoflurane inhibited MEPs in a dose-dependent manner. It can decrease the amplitudes and prolong the latencies. But increasing stimulation voltage will facilitate MEPs monitoring and increase the success ratio. Sevoflurane can be used in larger parts of MEPs monitoring surgery by increasing the stimulation voltage.
出处 《北京大学学报(医学版)》 CAS CSCD 北大核心 2016年第2期297-303,共7页 Journal of Peking University:Health Sciences
关键词 诱发电位 运动 七氟醚 脊髓 外科手术 麻醉 吸入 Evoked potentials motor Sevoflurane Spinal cord Surgical procedures operative Anesthesia inhalation
  • 相关文献

参考文献18

  • 1Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring : The point of view of the neurologist, the anesthe- siologist and the spine surgeon[ J]. Eur Spine J, 2007, 16 (Sup- p12) : Sl15 -S129.
  • 2Sloan T. Anesthetic effects on evoked potentials. Intraoperative monitoring of neural function [ M ]//. Nuwer MR. Handbook of clinical neurophysiology. New York: Elsevier, 2008: 94-126.
  • 3Scheufler KM, Zentner J. Total intravenous anesthesia for intra- operative monitoring of the motor pathways : An integral view com- bining clinical and experimental data [ J ]. J Neurosurg, 2002, 96 (3) : 571 -579.
  • 4Shida Y, Shida C, Hiratsuka N, et al. High-frequency stimulation restored motor-evoked potentials to the baseline level in the upper extremities but not in the lower extremities under sevoflurane anes- thesia in spine surgery [J]. J Neurosurg Anesthesiol, 2012, 24 (2) : 113 -120.
  • 5Reinaeher PC, Priebe H J, Blumrich W, et al. The effects of sti- mulation pattern and sevoflurane eoneentration on intraoperative motor-evoked potentials [ J ]. Anesth Analg, 2006, 102 ( 3 ) : 888 - 895.
  • 6Sloan TB, Toleikis JR, Toleikis SC, et al. Intraoperative neuro- physiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane [J]. J Clin Monit Comput, 2015, 29(1 ): 77-85.
  • 7Hansmann ON, Min K, Boos N, et al. Transcranial electrical stimulation: Significance of fast versus slow charge delivery for intra-operative monitoring [ J ]. Clin Neurophysiol, 2002, 113 (10) : 1532 -1535.
  • 8孟秀丽,王丽薇,周阳,马越,郭向阳.两种静脉麻醉技术在需行脊髓功能监测的脊柱矫形手术中的应用[J].北京大学学报(医学版),2013,45(3):474-479. 被引量:5
  • 9Belso N, Kui R, Szegesdi I, et al. Propofol and fentanyl induced perioperative anaphylaxis [ J ]. Br J Anaesth, 2011,106 ( 2 ) : 283 - 284.
  • 10Murphy A, Campbell DE, Baines D, et al. Allergic reactions to propofol in egg-allergic children [J]. Anesth Analg, 2011, 113 (1): 140-144.

二级参考文献14

  • 1Sloan T, Anesthetic effects on evoked potentials. Intraoperative monitoring of neural function/ IHandbook of clinical neurophysiol?ogy. Newyork: Elsevier B. V., 2008: 94 -126.
  • 2Sloan TB, Janik D, Jameson L. Multimodality monitoring of the central nervous system using motor-evoked potentials[J]. CurrOpin Anaesthesiol, 2008, 21 ( 5) : 560 - 564.
  • 3Logginidou HG, Li BH, Li DP, et al. Propofol suppresses the cor?tical somatosensory evoked potential in rats[J]. Anesth Analg, 2003,97(6): 1784 -1788.
  • 4Scheufler KM, Zentner J. Total intravenous anesthesia for intraop?erative monitoring of the motor pathways: an integral view combi?ning clinical and experimental data[J]. J Neurosurg, 2002, 96 (3) : 571 -579.
  • 5Leslie K, Clavisi O, Hargrove J. Target-controlled infusion versus manually-controlled infusion of propofol for general anaesthesia or sedation in adults[J]. Cochrane Database Syst Rev. 2008, 16 ( 3 ) : Coo06059.
  • 6Yeganeh N, Roshani B, Yari M, et al. Target-controlled infusion anesthesia with propofol and remifentanil compared with manually controlled infusion anesthesia in mastoidectomy surgeries[J] . Middle East J Anesthesiol, 2010, 20 (6) : 785 - 793.
  • 7Yamamoto Y, Kawaguchi M, Hayashi H, The effects of the neuro?muscular blockade levels on amplitudes of posttetanic motor?evoked potentials and movement in response to transcranial stimu?lation in patients receiving propofol and fentanyl anesthesia[J] . Anesth Analg, 2008,106(3): 930 -934.
  • 8Grasshoff C, Rudolph U, Antkowiak B. Molecular and systemic mechanisms of general anaesthesia: the 'multi-site and multiple mechanisms' concept [J]. CurrOpin Anaesthesiol, 2005, 18 (4) : 386 - 391.
  • 9Kissin I. Depth of anesthesia and bispectral index monitoring[J]. Anesth Analg, 2000, 90 (5) : 114 -117.
  • 10Kammer T, Rehberg B, Menne D. Propofol and sevofuurane in subanesthetic concentrations act preferentially on the spinal cord. Evidence from multimodal electrophysiological assessment[J] . Anesthesiology, 2002, 97 ( 6) : 1416 - 1425.

共引文献4

同被引文献32

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部