期刊文献+

孪生支持向量机在滚动轴承振动故障诊断中的应用 被引量:2

Application of Defect Diagnosis for Rolling Bearing Based on Twin Support Vector Machine
下载PDF
导出
摘要 通过对滚动轴承振动信号进行定量分析,从振动故障信号中提取与故障诊断方法有关的故障特征,在传统支持向量机的基础上,研究孪生支持向量机的建模方法,建立基于孪生支持向量机的滚动轴承振动故障诊断模型,并结合粒子群优化算法对故障诊断模型的关键参数进行寻优,从而得到最佳的故障诊断模型。仿真结果表明,将孪生支持向量机建模方法应用于滚动轴承振动故障诊断中,能够取得较好的诊断效果和诊断效率,结合粒子群优化算法进一步提高了故障诊断模型的分类准确率,为滚动轴承的振动故障诊断提供了可行有效的思路。 This method begins with the quantitative analysis of the defect signals received during roll bearing vibrations. Then the defect features are abstracted out of the defect signals through classical defect diagnosis method. And a twin support vector machine is utilized to process these data. In order to obtain a more accurate model, swarm optimization algorithm is applied to optimize the key parame- ters of the model. The result of simulation demonstrates that it is feasible to apply twin support vector machine in defect diagnosis for roll bearings, and the performance and efficiency are superior, which provides a new way for defect diagnosis for roll bearing.
作者 徐凯
出处 《煤矿机械》 2016年第4期147-150,共4页 Coal Mine Machinery
关键词 滚动轴承 故障诊断 孪生支持向量机 粒子群 rolling bearing fault diagnosis twin support vector machine PSO
  • 相关文献

参考文献4

二级参考文献23

  • 1李天云,赵妍,李楠.基于EMD的Hilbert变换应用于暂态信号分析[J].电力系统自动化,2005,29(4):49-52. 被引量:77
  • 2周福昌,陈进,何俊,毕果,张桂才,李富才.循环平稳信号处理在机械设备故障诊断中的应用综述[J].振动与冲击,2006,25(5):148-152. 被引量:23
  • 3The MathWorks [DB/OL]. [2009-10-25]. http://www. mathworks, com.
  • 4Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer, 1995.
  • 5Vapnik V N. Statistical Learning Theory. New York, USA : Wiley, 1998.
  • 6Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
  • 7Christianini V, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK : Cambridge University Press, 2002.
  • 8Jayadeva, Khemchandani R, Chandra S. Twin Support Vector Ma-chines for Pattern Classification.IEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29(5):905-910.
  • 9Peng Xinjun. TSVR: An Efficient Twin Support Vector Machine for Regression. Neural Networks, 2010,23(3):365-372.
  • 10Chapelle O. Training a Support Vector Machine in the Primal [EB/OL]. [2006-08-30]. http://www, kyb. mpg. de/publications/primal_[o]. pdf.

共引文献27

同被引文献13

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部