期刊文献+

一类随机时滞捕食模型持久性与渐近稳定性的研究 被引量:1

Permanence and Global Asymptotic Stability of a Stochastic Predator-prey Model with Time Delay
下载PDF
导出
摘要 主要研究具有随机时滞捕食与被捕食者模型的持久性和全局渐近稳定性,通过运用埃托奥公式和蒂尼导数,可以得到满足模型持久性与全局渐近稳定性的充分条件,此外根据这些充分条件我们可以发现扰动项也就是白噪声强度对模型的持久性产生了很大的影响,然而,对全局渐近稳定性没有影响. The main purpose of this paper concerns the permanence and global asymptotic stability of a stochastic predator-prey model with time delay.By the It's formula and Dini derivative,sufficient conditions which guarantee the permanence and global asymptotic stability of the system are obtained.Moreover,according to the conditions,we find that the disturbance term,which is the intensity of white noise,has a negative impact on permanence,but in any case,it makes no difference on global asymptotic stability.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2016年第2期19-26,共8页 Journal of Qufu Normal University(Natural Science)
基金 supported by 2010 AMS Subject Classification:34F05,60H10,93E03,92C60
关键词 随机捕食模型 持久性 布朗运动 埃托奥公式 全局渐近稳定性 Stochastic predator-prey model Permanence Brownian motion Ito's formula global asymptotic stability
  • 相关文献

参考文献17

  • 1Liu M, Bai C. Optimal harvesting of a stochastic logistic model with time delay[J]. J Nonlinear Sci, 2015,25 ..277-289.
  • 2Zou X, Li W, Wang K. Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process[J]. Appl Math Lett, 2013,26:170-174.
  • 3Liu M, Bai C. Optimal harvesting policy for a stochastic predator-prey model[J]. Appl Math Lett, 2104,34:22-26.
  • 4Gopalsamy K. Stability and oscillations in delay differential equations of Population Dynamics[M]. Dordrecht:Kluwer Ac- ademic, 1992.
  • 5Liu M. Optimal harvesting policy of a stochastic predator-prey model with time delay[J]. Appl Math Lett, 2015,48:102-108.
  • 6Lv J, Wang K. Definition on almost sure permanence of stochastic single species models[J]. J Math Anal Appl, 2015, 422:675-683.
  • 7Hu S G, Huang C M, Wu F K. Stochastic Differential Equations[M]. Beijing:Science Publishing House,2008.
  • 8Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources[M]. Seconded. New York Wiley, 1990. Beddington J R, 463-465. LiW, Wang K. 368:420-428.
  • 9May R M. Harvesting natural populations in a randomly fluctuating environment[J]. Science, 1977, 197.
  • 10Optimal harvesting policy for general stochastic Logistic population model[J]. J Math Anal Appl, 2010,.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部