期刊文献+

有关本原自动机的研究 被引量:1

Research on Primary Automation
下载PDF
导出
摘要 讨论了本原自动机的自同态,证明了如果广义正规自动机Α的所有本原自动机都是Sl(或G)-自动机,那么Α也是Sl(或G)-自动机;证明了强连通本原自动机的并是G-自动机;利用极小生成元集将标准自动机的定义推广到有限自动机,给出了广义标准自动机的定义及其成立的一个充分条件。 Some properties on primary automata are studied in this paper. Firstly, the endomorphism of the primary automaton is dealt with. The paper proves that if all the primary automata are Se (or G )-automa ton, so is . Secondly, the union of the strongly connected automata is proved to be G -automaton. Finally, the definition of canonical automata is extent to finite automata by the minimal generated set. Also, the definition of generalized canonical automata is given and the sufficient conditions are provided.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2016年第2期88-90,共3页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金(61402364) 陕西省自然科学基金(2014JQ1014) 陕西省教育厅基金(14JK1246)
关键词 本原自动机 极小生成元集 自同态幺半群 primary automaton minimal generated set Endomorphism monoid
  • 相关文献

参考文献10

  • 1TURING A M. On Computable Numberwith an Ap- plication to the Entscheiclungs Problem [J]. Proceed- ings of the London Mathematical Society, 1936, 42 (2) : 230-265.
  • 2KIEENS S E.Representation of Events in Nerve Nets and Finite Automata. In: Automata Studies [M]. Princeton : Princeton University Press, 1956 : 3-42.
  • 3WEE W G. On Generalizations of Adaptive Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification[D]. West Lafayette: Purdue University, 1967.
  • 4PAZ A.Introduction to Probabilistic Automata [M]. San Diego : Academic Press, 1971.
  • 5FLECK A C. Isomorphism Groups of Automata [J]. Journal of the Association for Computing Machinery, 1962, 9:469-476.
  • 6gAVE Z.Structure and Transition-Preserving Func- tions of Finite Automata[J]. J ACM, 1968,15:135 -158.
  • 7FEICHTINGER O.Some Results on the Relation Be- tween Automata and Their Automorphism Groups [J]. Computing, 1966, 1:327-340.
  • 8ITO M.Algebraic Theory of Automata and I.anguages [M]. Singapore: World Scientific Publishing Co Pte Ltd, 2004.
  • 9TIAN Jing,ZHAO Xianzhong. Representations of Com- mutative Asynchronous Automata[J]. J Comput System Sci,2012, 78: 504-516.
  • 10XU Hui, TIAN Jing, ZHAO Xianzhong. Monoid-Ma- trix Type Automata [J]. Theor Comput Sci, 2014, 520:1-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部