期刊文献+

微通道内电渗压力混合驱动幂律流体流动模拟 被引量:4

Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels
下载PDF
导出
摘要 为了研究微通道内电渗压力混合驱动幂律流体的流动特性,建立了微通道内电渗压力混合驱动幂律流体的计算模型,其双电层电势、流体的流场分布分别由Poisson-Boltzmann(P-B)方程和Navier-Stokes(N-S)方程描述.讨论了无量纲Debye(德拜)参数K、壁面ζ*电势和幂律指数n对流体流动特性和Poiseuille数的影响.结果表明,当压力梯度与外加电场方向一致(Γ>0)时,剪切变稀流体的速度大于剪切变稠流体;压力梯度与外加电场方向相反(Γ<0)时,结果相反.Poiseuille数是无量纲Debye常数K、壁面ζ*电势和幂律指数n的增函数. The pressure effects on electroosmotic flows of power-lawfluids in microchannels were investigated. The electric double layer( ED L) potential was described with the Poisson-Boltzmann( P-B) equation,and the flowfield distribution of the power-lawfluid was characterized with the Navier-Stokes( N-S) equation. Numerical simulation was carried out to discuss the influences of the dimensionless D ebyeHuckel parameter,the wall Zeta potential and the flowbehavior index on the flowproperties and the Poiseuille number. The results reveal that,in the case of the same pressure gradient direction with the electric field direction,the velocity of a shear-thinning fluid is higher than that of a shear-thickening one,whereas the result will be opposite for a reverse pressure gradient direction. The Poiseuille number is an increasing function of the dimensionless D ebye-Huckel parameter,the Zeta potential and the flowbehavior index.
出处 《应用数学和力学》 CSCD 北大核心 2016年第4期373-381,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11302095)~~
关键词 微流体 幂律流体 Poiseuille数 电渗流 microfluidics power-law fluid Poiseuille number electroosmotic flow
  • 相关文献

参考文献19

  • 1Cheng S B,Skinner C D,Taylor J,Attiya S,Lee W E,Picelli G,Harrison D J.Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J].Analytical Chemistry,2001,73(7):1472-1479.
  • 2Buchholz B A,Doherty E A S,Albarghouthi M N,Bogdan F M,Zahn J M,Barron A E.Microchannel DNA sequencing matrices with a thermally controlled "viscosity switch"[J].Analytical Chemistry,2001,73(2):157-164.
  • 3Choban E R,Markoski L J,Wieckowski A,Kenis P J A.Microfluidic fuel cell based on laminar flow[J].Journal of Power Sources,2004,128(1):54-60.
  • 4李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012.
  • 5LI Zhan-hua,WU Jian-kang,HU Guo-qing,HU Guo-hui.Fluid Flow in Microfluidic Chips[M].Beijing:Science Press,2012.
  • 6XUAN Xiang-chun,LI Dong-qing.Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J].Journal of Colloid and Interface Science,2005,289(1):291-303.
  • 7Zimmerman W B,Rees J M,Craven T J.Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction[J].Microfluidics and Nanofluidics,2006,2(6):481-492.
  • 8Wang J,Wang M,Li Z.Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J].Journal of Colloid and Interface Science,2006,296(2):729-736.
  • 9Tang G H,Li X F,He Y L,Tao W Q.Electroosmotic flow of non-Newtonian fluid in microchannels[J].Journal of Non-Newtonian Fluid Mechanics,2009,157(1/2):133-137.
  • 10Tang G H,Ye P X,Tao W Q.Electroviscous effect on non-Newtonian fluid flow in microchannels[J].Journal of Non-Newtonian Fluid Mechanics,2010,165(7/8):435-440.

二级参考文献19

  • 1Tian F, Li B, Kwok D Y. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials[J]. Langmuir,2005,21(3): 1126-1131.
  • 2Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects[J]. Analytical Chemistry,2001,73(9): 1979-1986.
  • 3Hessel V, Lwe H, Schnfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science,2005,60(8/9): 2479-2501.
  • 4Capretto L, CHENG Wei, Hill M, ZHANG Xun-li. Micromixing within microfluidic devices[C]//LIN Bing-cheng, ed. Microfluidics: Topics in Current Chemistry,304. Berlin, Heidelberg: Springer-Verlag, 2011: 27-68.
  • 5Jeon W, Shin C B. Design and simulation of passive mixing in microfluidic systems with geometric variations[J]. Chemical Engineering Journal,2009,152(2/3): 575-582.
  • 6ZHANG Fang, Daghighi Y, LI Dong-qing. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow[J]. Journal of Colloid and Interface Science,2011,364(2): 588-593.
  • 7Nayak A K. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential[J]. International Journal of Heat and Mass Transfer,2014,75: 135-144.
  • 8WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels[J]. Modern Physics Letters B,2005,19(28/29): 1515-1518.
  • 9WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.
  • 10Alizadeh A, Wang J K, Pooyan S, Mirbozorgi S A, Wangd M. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods[J]. Journal of Colloid and Interface Science,2013,407: 546-555.

共引文献19

同被引文献16

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部