期刊文献+

一种弹跳机器人姿态调节中离散和连续运动建模与实验研究 被引量:2

Modeling and Experimental Study of Discrete and Continuous Movements during Posture Adjustment of a Jumping Robot
原文传递
导出
摘要 对一种仿生弹跳机器人——SEUJumper——的离散和连续运动进行研究,建立了折叠式和展开式两种落地摔倒后自复位方法模型,仿真分析了两者的运动性能,建立了离散式和连续式航向调节方法模型,比较了两种模型的优缺点.设计了自复位和航向调节的机构模型,实现了样机制作,并分别在平整实验台和崎岖草地环境中对两种自复位方法和两种航向调节方法进行了测试.实验结果表明,所设计的机构都能完成机器人在平整表面的自复位和航向调节,而只有展开式自复位和连续式航向调节机构可以分别实现在粗糙表面的自复位和航向调节,即在整体离散弹跳运动中加入局部连续运动能提高SEUJumper在室外崎岖环境中的运动性能,从而说明充分考虑离散和连续运动的协作设计思路能够增强机器人在非结构化环境中的适用性. Discrete movement and continuous movement of a bio-inspired jumping robot named SEUJumper are investi-gated. Folding and unfolding based styles of self-righting after falling down during landing are modeled. The locomotion characteristics of these two models are analyzed by simulations. Discrete and continuous styles of steering methods are modeled and their advantages and disadvantages are compared. The self-righting and steering mechanisms are designed and prototypes are fabricated. And the two kinds of self-righting methods and two steering methods of the robot are tested in a flat experimental platform and an uneven grass environment. Experimental results show that all the designed mechanism can be used for self-righting and steering of the robot on flat grounds, while only the unfolding based self-righting method and continuous steering method can be used in uneven environments. It means that the locomotion capability of SEUJumper in outdoor uneven environments can be improved by combining the entire discrete jumping movement with local continuous movement. And the design idea that fully considers cooperation between discrete movement and continuous movement can enhance the applicability of robots in unstructured environments.
出处 《机器人》 EI CSCD 北大核心 2016年第2期160-168,共9页 Robot
基金 国家自然科学基金(61403079 61375076) 江苏省自然科学基金(BK20140637) 博士后国际交流计划(20140009)
关键词 弹跳机器人 仿生机器人 自复位 航向调节 离散运动 连续运动 jumping robot bio-inspired robot self-righting steering discrete movement continuous movement
  • 相关文献

参考文献3

二级参考文献41

  • 1[1]Nancy G C, Xu Y S. Dynamic model of a gyroscopic wheel[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 1998. 2683-2688.
  • 2[2]Arikawa K, Hiroses. Development of quadruped walking robot TITAN-III[A]. Proceedings of the 1996 IEEE/IROS International Conference on Intelligent Robots and Systems[C]. Japan: 208-214.
  • 3[3]Krotkov E, Simmons R. Perception,planning and control for autonomous walking with the ambler planetary rover[J]. The International Journal of Robotics Research, 1996,15(2): 155-180.
  • 4[4]Endo G, Hirose S. Study of roller walker (system integration and basic experiments)[A]. Proceedings of TITech COE/Super Mechano-Systems Workshop'99[C]. Japan: 1999. 153-160.
  • 5[5]Sreenivasan S V, Wilcox B H. Stability and traction control of an actively actuated micro-rover[J]. Journal of Robotic Systems,1994,11(6):487-502.
  • 6[6]Chen C, Trivedi M M. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[A]. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. 1993. 1349-1356.
  • 7陈勇,陈东辉,佟金,陈秉聪.仿蝗虫机器人运动形态的三维动态仿真[J].农业机械学报,2007,38(9):151-154. 被引量:6
  • 8Nguyen Q V, Park H C, Goo N S, Byun D Y. Characteristics of a beetle's free flight and a flapping-wing system that mimics beetle flight. Journal of Bionic Engineering, 2010, 7, 77-86.
  • 9Wood R J. The first takeoff of a biologically inspired at-scale robotic insect. )EEE Transactions on Robotics, 2008, 24, 341-347.
  • 10Ozcan O, Wang H, Taylor J D, Sitti M. Surface tension driven water strider robot using circular footpads. Proceed- ings of 1EEE International Conference on Robotics and Automation, Anchorage, AK, USA, 2010, 3799-3804.

共引文献71

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部