期刊文献+

基于关键点序列的人体动作识别 被引量:10

Human Action Recognition Based on the Sequence of Key Points
原文传递
导出
摘要 在不同的光照及视角下,为了实现人体日常生活动作的高识别率,提出了一种基于Kinect的识别方法.首先,受到人类进行动作识别时往往关注局部细节动作的启发,层次化地处理了采集到的人体关节点数据:通过判断躯干关节点位置变化的缓慢程度,将动作粗分类为上肢动作和躯干动作;之后对于上肢动作,关注手部关节轨迹变化,而对于躯干动作,关注中心关节点轨迹.然后,通过C均值聚类法从这两类轨迹中提取关键点,并将动作的轨迹映射到相应的关键点,得到每组粗分类动作的关键点序列.并提出了时序直方图的概念用以建模关键点序列.再通过比较轨迹间关键点序列的相似性,完成动作识别任务.最后,将该算法应用于采集的数据集合,得到了99%的识别正确率,表明算法能够有效地完成人体动作识别任务. To obtain high recognition accuracy of human actions in daily life under different illumination conditions and angles of view, a recognition method based on Kinect is proposed. Inspired by the fact that the human’s attention focuses on the detailed partial action in most cases of action recognitions, the proposed recognition method processes the sensed joints data hierarchically. Roughly, actions are classified into the upper limb action and the trunk action by judging the change speed of the position of the trunk joint. Particularly, the hand joints trajectories in the upper limb action and the trunk joint trajectory in the trunk action are focused on. Then, key points are extracted from the two rough categories of trajectories by C-means clustering algorithm for each category separately. And the trajectory of the action is mapped to the corresponding key points. By this means, the sequence of key points in each category is obtained. And the sequences of key points are modeled based on the concept of the proposed temporal order histogram. Nextly, the action recognition is accomplished by comparing the similarities of the sequences of the key points among the trajectories. Finally, the recognition rate of 99%is realized on the collected datasets. The results show that the method is effective for human action recognition task.
出处 《机器人》 EI CSCD 北大核心 2016年第2期200-207,216,共9页 Robot
基金 国家自然科学基金(61203341 61573216) 山东省自然科学基金(ZR2015FM007)
关键词 人体动作识别 人体关节点 C均值 K近邻 时序直方图 human action recognition human joint point C-means k nearest neighbor temporal order histogram
  • 相关文献

参考文献16

二级参考文献115

  • 1么键,刘冀伟,韩旭,王志良.基于光流的运动人体提取[J].北京邮电大学学报,2006,29(z2):148-150. 被引量:3
  • 2何卫华,李平,文玉梅,叶波.复杂背景下基于图像融合的运动目标轮廓提取算法[J].计算机应用,2006,26(1):123-126. 被引量:16
  • 3王晓光,苏群星.虚拟维修通用仿真软件系统的设计[J].计算机仿真,2006,23(8):266-268. 被引量:11
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5Xu G Y, Cao Y Y. Action recognition and activity under-standing[ J ]. Journal of Image and Graphics, 2009,14 ( 2 ) :189 -195.
  • 6Gu J X, Ding X Q, Wang S J, et al. A survey of activity anal-ysis algorithms[ J]. Journal of Image and Graphics ,2009,14(3) :377 -387.
  • 7Laptev I,Lindeberg T. Interest point detection and scale se-lection in space-time [ C ]//Proc Scale Space Methods in Computer Vision. 2003 : 372 -387.
  • 8Laptev I. On space-time interest points [ J ]. International Journal of Computer Vision,2005,64 ( 2/3 ) : 107 -123.
  • 9Laptev I,Caputo B, Schuldt C, et ah Local velocity-adapted motion events for spatio-temporal recognition [ J ]. Computer Vision and Image Understanding,2007,108:207 -229.
  • 10Imrml N, Dexter E, Laptev I. View-independent action recog-nition form temporal self-similarities [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33 ( 1 ) : 172 -185.

共引文献201

同被引文献56

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部