期刊文献+

核级阀门故障概率的时变性研究 被引量:1

Research on Time-Varying Characteristics for Nuclear Power Valve Failure Probability
原文传递
导出
摘要 核级阀门具有高可靠性、长寿命的特点,阀门历史失效数据的小子样问题突出,并且由冲击、振动、磨损、腐蚀等耗损性因素引起的故障,其故障概率具有时变性,随时间的增加而增大。故障概率p为常数的Jeffreys先验模型不能以合理概率复现观察数据,故满足不了分析p的时变性要求。对服从Binomial分布的阀门故障数据建立广义线性模型,研究概率p的时间趋势;在评价模型复现观察数据能力时不仅进行定性图检验,而且还利用贝叶斯?2统计量进行定量化检验;经过定性和定量的双重检验,表明该模型具有良好的预计能力,可以分析阀门故障概率p的时变性。 Nuclear power valve has the characteristics of high reliability and long lifetime, and its failure data have obvious small sample problem. The nuclear power valve failure are caused by loss factors of impact, shaking, abrading and corrosion. The failure probability has time trend, and the p will raise (decrease) with the increasing of time. The Jeffreys prior model of invariable p can not reflect the time trend of p very well, so it can not analyze the time-varying characteristics of p. This paper built the Generalized Linear Model (GLM) for valves failure data having Binomial distribution, analyzed the time trend of p inspected the model through posterior predictive distribution, and assessed the model ability of replicating observed data by graph inspection and Bayesian chi-square. The results showed that GLM had well fit index and was more propitious to assess the failure probability p of valve.
出处 《核动力工程》 EI CAS CSCD 北大核心 2016年第2期111-115,共5页 Nuclear Power Engineering
基金 核反应堆系统设计技术国家重点实验室基金资助项目(HT-JXYY-02-2014002)
关键词 核级阀门 Jeffreys先验 Binomial分布 广义线性模型 Nuclear power valve, Jeffreys prior, Binomial distribution, Generalized linear model
  • 相关文献

参考文献7

二级参考文献21

  • 1徐莉,郑伟,李禾.经验贝叶斯方法在核电站概率安全评价中的应用[J].原子能科学技术,2006,40(1):57-60. 被引量:7
  • 2Bradlow, Eric T., Bruce G.S. Hardie, Peter S. Fader. Bayesian Inference for the Negative Binomial Distribution Via Polynomial Expansions[J].Journal of Computational and Graphical Statistics, 2002,11(1).
  • 3Barlow, R. E, Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models[M].New York: Holt, Rinehart and Winston, 1975.
  • 4David L,Libby, Melvin R, Novick. Multivariate Generalized Beta Distributions with Applications to Utility Assessment[J].Joumal of Educational Statistics,1982,7 (4).
  • 5D. H. Young. Some Results for the Order Statistics of the Negative Binomial Distribution Under Slippage Configuration [J]. Biometrika, 1973,60(1).
  • 6Gelman, A., Carlin, J., Stem, H., Rubin, D.Bayesian Data Analysis(2^nd Edition)[M].New York:Chapman and Hall/CRC Press,2003.
  • 7Gradshteyn, I. S., Ryzhik, I. M. Table of Integrals, Series, and Products (6^th Edition)[M].San Diego: Academic Press,2000.
  • 8Gupta, A. K, Nadarajah, S. Handbook of Beta Distribution and Its Applications[M].New York: Marcel Dekker,2004.
  • 9Howard Raiffa, Robert Schlaifer.Applied Statistical Decision Theory. Division of Research, Graduate School of Business Administration[M].Boston:Harvard University, 1961.
  • 10James J, Chen, Melvin R. Noviek.Bayesian Analysis for Binomial Models with Generalized Beta Prior Distributions[J].Journal of Educational Statistics, 1984,9 (2).

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部