期刊文献+

正电子发射断层扫描图像非局部几何非线性扩散去噪方法

Non-local geometric nonlinear diffusion filter for denoising of positron emission tomography images
下载PDF
导出
摘要 目的:评估一种新的正电子发射断层扫描技术(PET)图像去噪方法—非局部几何非线性扩散滤波。方法:首先,计算PET图像的几何非线性扩散系数;然后,对该扩散系数进行非局部邻域加权平均;最后,用非局部加权平均后的扩散系数对PET图像进行几何非线性扩散滤波。结果:与原几何非线性扩散滤波、非局部均值滤波、PURE-LET滤波方法相比,非局部几何非线性扩散滤波可提高PET图像峰值信噪比和结构相似性,增强图像视觉效果。结论:非局部几何非线性扩散滤波是一种有效的PET图像去噪方法。 Objective To assess a novel non-local geometric nonlinear diffusion filter for denoising positron emission tomography(PET) images. Methods The geometric nonlinear diffusion coefficients of PET images were firstly calculated. And then, the nonlocal weighted average of the calculated coefficients was taken. Finally, the diffusion coefficients after the non-local geometric weighted averaging were applied for the geometric nonlinear diffusion filtering(GNLDF). Results Compared with GNLDF, nonlocal mean filtering and PURE-LET filtering, the non-local GNLDF improved the peak signal-to-noise ratio and structural similarity of PET images, and enhanced the image visual effect. Conclusion The non-local GNLDF is an efficient method for denoising PET image.
出处 《中国医学物理学杂志》 CSCD 2016年第4期357-363,共7页 Chinese Journal of Medical Physics
基金 国家自然科学基金(61271382) 湖南省肿瘤医院科研平台建设基金
关键词 正电子发射断层扫描技术 图像去噪 几何非线性扩散滤波 非局部均值滤波 PURE-LET positron emission tomography image denoising geometric nonlinear diffusion filtering non-local mean filtering PURE-LET
  • 相关文献

参考文献18

  • 1NAQA I E. The role of quantitative PET in predicting cancer treatment outcomes[J]. Clin Trans Imaging, 2014, 2(4): 305-320.
  • 2SCHWARTZ D L, FORD E, RAJENDRAN J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cellcarcinoma[J]. Int J Radiat Oncol Biol Phys, 2005, 61(1): 129-136.
  • 3MEJIA J M, OCHOADOMINGUEZ HDE J, VERGARAVILLEGAS O O, et al. Noise reduction in small- animal PET images using amultiresolution transform[J]. IEEE Trans Med Imaging, 2014, 33(10):2010-2019.
  • 4YAN J, LIM J C, TOWNSEND D W. MRI-guided brain PET image filtering and partial volume correction[J]. Phys Med Biol, 2015, 60(3): 961-976.
  • 5LI Y, LU J, WANG L, et al. Removing poisson noise from images in wavelet domain [C]//Industrial Technology, 2005. IEEE International Conference on. IEEE, 2005: 39-44.
  • 6WILLETT R M, NOWAK R D. Platelets: a multiscale approach for recovering edges and surfaces in photon- limited medical imaging [J]. IEEE Trans Med Imaging, 2003, 22(3): 332-350.
  • 7HANSEN M, YU B. Wavelet thresholding via MDL for natural images[J]. IEEE Trans Inform Theory, 2000(5): 1778-1788.
  • 8MORSHEDDOST H, ASEMANI D, MIRAHADI N. Optimization of MDL-based wavelet denoising for fMRI data analysis[C]//Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on. IEEE,2014: 33-36.
  • 9LUISIER F, VONESCH C, BLU T, et al. Fast interscale wavelet denoising of poisson-corrupted images[J]. Signal Processing, 2010,90(2): 415-427.
  • 10MICHEL-GONZáLEZ E, CHO M H, LEE S Y. Geometric nonlineardiffusion filter and its application to X-ray imaging[J]. Biomed Eng Online, 2011, 10(1): 47.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部