期刊文献+

改进的基于特征线的N-S方程算子分裂有限元法

Improved characteristic-based operator-splitting finite element for Navier-Stokes equations
下载PDF
导出
摘要 基于特征线的Navier-Stokes(N-S)方程算子分裂有限元法(CBOS有限元法)的核心是在每一个时间层上,采用算子分裂法将N-S方程的对流项和扩散项分开求解;对流项的求解过程借鉴了简单显式特征线时间离散,显式求解。该文在原CBOS有限元法基础上推导了一种更加精确的对流项显式离散方法。通过自编程序对方腔流进行数值模拟,表明该算法具有更高的计算精度。低雷诺数下圆柱绕流计算所得的阻力系数、升力系数、斯特劳哈数等与已有数据较为接近,表明该文中算法能较准确地模拟圆柱绕流的流场特性;最后,文中分析了Re=200时圆柱绕流在一个周期内所受升力变化与对应流场中压力和流线演化的关系。 The pivotal ideas of characteristic-based operator-splitting(CBOS) finite element method for Navier-Stokes equations are that the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm in each time step.The convective part can be discretized using the simple explicit characteristic temporal discretization and solved explicitly.On the basis of CBOS finite element method,an exact explicit discrete method is developed.The improved method has higher calculation accuracy through numerical simulation of lid-driven cavity flow.Furthermore,the method is used to simulate the incompressible viscous flow around cylinder with low Reynolds number.The numerical results agree well with other numerical results,which proves that it can exactly simulate the characteristics of flow around cylinder.Finally,the relationship between a cycle of lift coefficient and the corresponding development of pressure and streamline is analyzed at Re=200.
出处 《船舶力学》 EI CSCD 北大核心 2016年第4期381-392,共12页 Journal of Ship Mechanics
基金 国家自然科学基金(51349011 41072235)
关键词 N-S方程 CBOS有限元法 方腔流 圆柱绕流 N-S equations CBOS finite element method lid-driven cavity flow flow around cylinder
  • 相关文献

参考文献14

  • 1Christie I, Griffiths D F, Mitchell A R, et al. Finite element methods for second order differential equations with significant first derivatives[J]. International Journal for Numerical Methods in Engineering, 1976, 10(6): 1389-1396.
  • 2Donea J. A Taylor-Galerkin method for convective transport problems[J]. International Journal for Numerical Methods in Engineering, 1984, 20(1): 101-119.
  • 3Hughes T J R, Franca L P, Hulbert G M. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective diffusive equations[J]. Computer Methods in Applied Mechanics and Engineer- ing, 1989, 73(2): 173-189.
  • 4Pironneau O, Liou J, Tezduyar T. Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the ad- vection-diffusion equation with time-dependent domains[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 100(1): 117-141.
  • 5Zienkiewicz O C, Codina R. A general algorithm for compressible and incompressible-flow, I: The split characteristic based scheme[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9): 869-885.
  • 6WANG DaGuo,WANG HaiJiao,XIONG JuHua,THAM L G.Characteristic-based operator-splitting finite element method for Navier-Stokes equations[J].Science China(Technological Sciences),2011,54(8):2157-2166. 被引量:13
  • 7Glowinski R, Pironneau O. Finite element method for Navier-Stokes equations[J]. Annual Review of Fluid Mechanics, 1992, 24(1): 167-204.
  • 8Zienkiewicz OC,TaylorRL.有限元方法(第五版)第三卷流体动力学[M].符松,刘扬扬译.北京:清华大学出版社,2008.
  • 9Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3): 387-411.
  • 10Liu Z, Zheng X, Sung C H. Preconditioned multi-grid methods for unsteady incompressible flows[J]. Journal of Computa- tional Physics, 2000, 160(1): 151-178.

二级参考文献8

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部