摘要
由于电子商务和信息规模的快速增长,信息量在不断的加大,用户面对这些海量的信息无法知道哪些是对自己有用的信息,信息过滤的重要手段之一就是推荐系统,通过对用户行为的分析,个性化推荐系统就可以预测出用户的喜好,使用户能够更轻松地找到所需要的信息,能够自行在模拟状态下通过销售人员的帮助来完成所有的购买过程。
Due to the rapid growth of e-commerce and the scale of information,the amount of information is constantly increasing.Facing these vast amounts of information,users can not know what is useful for their own information,so the information filtering is one of the important means of recommendation system. Through the analysis on user behavior,the personalized recommendation system can predict the user's preferences,and users can easily find the information needed to complete all the purchase process through the help of sales staff in the simulation state.
出处
《山西电子技术》
2016年第2期89-90,共2页
Shanxi Electronic Technology
关键词
电子商务
推荐算法
个性化服务
协同过滤
electronic commerce
recommendation algorithm
personalized service
collaborative filtering