期刊文献+

基于上下文语义的句子情感分类

Sentence-level sentiment analysis of context-aware
下载PDF
导出
摘要 针对现有机器学习方法在情感分析时,需要大量的训练数据和复杂的语言模型结构,但难以获取全文的情感问题,文中提出了一种在有限数据集的情况下,兼顾局部和全局的上下文信息情感模型结构。首先把词汇和语篇知识进行整合约束,然后通过后验正则化应用在条件随机场模型,最后得到句子的情感倾向。通过多组实验分析,本文使用的方法与CRF模型对情感句分类相比有明显的提升。 Now,most existing machine learning approaches need large training data and complex linguistic structures,but often fail to capture the non-local contextual sentiment. Therefore,a structure of the model can take into account both local and global contextual information under the environment of limit data sets. First,it encodes lexical and discourse knowledge as expressive constrains; then,it integrates them into the learning of condition random field via posterior regularization,finally,it gets the emotional tendency of the sentence. Through multi-sets of experiments,the method has significant improvement on sentiment classification in the CRF model.
出处 《信息技术》 2016年第4期135-138,143,共5页 Information Technology
关键词 情感分类 条件随机场 后验正则化 sentiment classification CRF posterior regularization
  • 相关文献

参考文献10

  • 1Kuzman Ganchev,Joao Graca,Jennifer Gillenwateret al.Posterior regularization for structured latent variable models[J].Journal of Machine Learning Research,2010,11(1):2001-2049.
  • 2Kuzman Ganchev,Dipanjan Das.Cross lingual discriminative learning of sequence models with posterior regularization[C].Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013,8:1996-2006.
  • 3Tetsuji Nakagawa,Kentaro Inui,Sadao Kurohashi.Dependency treebased sentiment classification using crfs with hidden variables[C].The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics,2010,6:786-794.
  • 4Richard Socher,Jeffrey Pennington,Eric H Huang,et al.Semi-supervised recursive autoencoders for predicting sentiment distributions[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing,2011:151-161.
  • 5Livia Polanyi,Annie Zaenen.Contextual valence shifters.In Computing attitude and affect in text:Theory and applications[J].Computational Linguistics,2006,33(2):275-277.
  • 6Oscar Tackstrom,Ryan Mc Donald.Discovering fine-grained sentiment with latent variable structured prediction models[J]∥Advances in Information Retrieval-2011,2011a:368-374.
  • 7Zhou Lan-jun,Li Bin-yang,Gao Wei,et al.Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing,2011,6:162-171.
  • 8Charles Sutton,Andrew Mc Callum.An introduction to conditional random fields for relational learning[M]∥Introduction to Statistical Relational Learning.[S.l.]:MIT Press,2006.
  • 9Rashmi Prasad,Nikhil Dinesh,Alan Lee,et al.2008.The Penn Discourse Tree Bank 2.0.In LREC[J].Proceedings of Lrec,2008,24(1):2961-2968.
  • 10Janaki Meena M,Chandran K R.Classifying Text with Statistically Selected Features to Closely Related Categories[C].International Conference on Advances in Recent Technologies in Communication and Computing.IEEE,2009:297-301.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部