期刊文献+

基因功能富集分析的研究进展 被引量:9

Progress in Gene Functional Enrichment Analysis
原文传递
导出
摘要 基因功能的富集分析已成为高通量组学数据分析的常规手段,对于揭示生物医学分子机制具有重要意义.目前已有上百种基因功能富集分析的方法和工具.根据所解决的问题和算法的原理,这些方法可大体分为过代表分析、功能集打分、基于通路拓扑结构和基于网络拓扑结构4大类.本文对这4大类方法的原理及其中的典型方法进行了综述,并讨论了基因功能富集分析结果的冗余性问题及建立标准数据集的必要性. Gene functional enrichment analysis has become a common procedure in high-throughput omics data analysis and plays a vital role in revealing molecular mechanisms in biomedical sciences. Hundreds of different gene functional enrichment methods and tools have been developed. In accordance with the problems to be solved and the principle of algorithms, these methods can be approximately classified into four categories, including over-representation analysis, functional class scoring, pathway topology, and network topology. In this article, we review the principles of these four main categories and examples of commonly used approaches. We discussed the redundancy in the results of gene functional enrichment analysis and the necessity to build benchmark datasets.
出处 《中国科学:生命科学》 CSCD 北大核心 2016年第4期363-373,共11页 Scientia Sinica(Vitae)
基金 国家自然科学基金(批准号:91231116 31071113 30971643) 国家重点基础研究发展计划(批准号:2012CB316505 2010CB529505)资助
关键词 组学数据 功能富集 冗余性 标准数据集 omics data functional enrichment redundancy benchmark datasets
  • 相关文献

参考文献1

二级参考文献58

  • 1Kim SY, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005; 6:144.
  • 2Efron B, Tibshiran R. On testing the significance of sets of genes. Ann Appl Stat 2007; 1:107-129.
  • 3Dinu I, Potter JD, Mueller T, et al. Improving gene set analy- sis of microarray data by SAM-GS. BMC Bioinformatics 2007; 8:242.
  • 4Luo W J, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for path- way analysis. BMC Bioinformatics 2009; 10:161.
  • 5Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Bio12004; 3:Article3.
  • 6Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane ISt Park PJ. Discovering statistically significant pathways i~ expression profiling studies. Proc Natl Acad Sci USA 2005~ 102:13544-13549. |.
  • 7Goeman J J, Oosting J, Cleton-Jansen AM, Anninga JK, van Houwelingen HC. Testing association of a pathway with survival using gene expression data. Bioinformatics 2005; 21:1950-1957.
  • 8Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 2004; 20:93-99.
  • 9Mansmann U, Meister R. Testing differential gene expression in functional groups - Goeman's global test versus an AN- COVA approach. Meth Inform Med 2005; 44:449-453.
  • 10Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gen~ expression using singular value decomposition. BMC Bioin-[ formatics 2005; 6:225. /.

共引文献1

同被引文献72

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部