期刊文献+

协同过滤中有影响力近邻的选择 被引量:4

Influential Neighbor Selection in Collaborative Filtering
原文传递
导出
摘要 数据稀疏性制约着协同过滤的推荐性能,为此,首先根据用户评分数量定义了用户的影响因子,在计算用户之间的相似性时,增加了影响因子衡量用户关系;其次,根据用户评分质量定义了有影响力用户群体.在此基础上,结合用户的评分数量和评分质量,使选择的有影响力近邻最大程度上作用于推荐过程.实验结果表明,所提方法能显著提高推荐性能. The recommendation performance of collaborative filtering is restricted by data sparsity. To solve this problem,the factor of user influence was thereafter defined according to the number of ratings to measure the relationship while calculating the similarity between users. Then,the influential user group was introduced according to the rating quality. On this basis,the chosen influential neighbor can work on the process of recommendations via combining the number of user ratings with the rating quality.Experiments show that the proposed method can significantly improve the recommendation performance.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第1期29-34,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61273292 61303131 51474007) 教育部人文社会科学研究青年基金项目(13YJCZH077) 福建省高校新世纪优秀人才支持计划项目
关键词 协同过滤 有影响力近邻 评分数量 评分质量 数据稀疏性 collaborative filtering influential neighbor number of ratings rating quality data sparsity
  • 相关文献

参考文献7

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (6) : 734- 749.
  • 2Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[ C ]//In Proceedings of the 14'h Conference on Uncertainty in Arti- ficial Intelligence. Madison: USA, 1998:43-52.
  • 3Shardanand U, Maes P. Social information filtering: al- gorithms for automating word of mouth [ C ]////In Proceed- ings of the SIGCI-II Conference on Human Factors in Com- puting Systems. New York: USA, 1994: 210-217.
  • 4Liu Haifeng, Hu Zheng, Mian A, et al. A new user simi- larity model to improve the accuracy of collaborative filte- ring [ J ]. Knowledge-Based Systems, 2014, 56: 156- 166.
  • 5徐雅斌,孙晓晨.位置社交网络的个性化位置推荐[J].北京邮电大学学报,2015,38(5):118-124. 被引量:14
  • 6吴信东,李毅,李磊.在线社交网络影响力分析[J].计算机学报,2014,37(4):735-752. 被引量:120
  • 7Bobadilla J, Ortega F, Hernando A, et al. Recommender systems survey [ J ]. Knowledge-Based Systems, 2013, 46 : 109-132.

二级参考文献17

  • 1Zhang J,Chow C,Li Y. iGeoRec : a personalized and ef-ficient geographical location recommendation framework[J]. IEEE Transactions on Services Computing, 2014(99) :1-14.
  • 2Sattari M , Toroslu I H, Karagoz P, et al. Extended fea-ture combination model for recommendations in location-based mobile services [ J ]. Knowledge and InformationSystems, 2014,39(2) :279-313.
  • 3Xie J, Knijnenburg B P, Jin H. Location sharing privacypreference: analysis and personalized recommendation[C ] //Proceedings of the 19th International Conference onIntelligent User Interfaces. New York: ACM , 2014 : 189-198.
  • 4Li W, Yao M , Zhou X,et al. Recommendation of loca-tion-based services based on composite measures of trustdegree [ J ]. The Journal of Supercomputing, 2014,69(3) : 1154-1165.
  • 5Hu B, Ester M. Spatial topic modeling in online socialmedia for location recommendation [C] // Proceedings ofthe 7'h ACM Conference on Recommender Systems. NewYork: ACM, 2013: 25-32.
  • 6Wang H , Terrovitis M , Mamoulis N. Location recommen-dation in location-based social networks using user check-in data[C] //Proceedings of the 21st ACM SIGSPATIALInternational Conference on Advances in Geographic In-formation Systems. New York; ACM , 2013: 364-373.
  • 7Yuan Q, Cong G. Time-aware point-of-interest recom-mendation [C] // Proceedings of the 36th InternationalACM SIGIR Conference on Research and Development inInformation Retrieval. New York: ACM , 2013 : 363-372.
  • 8Noulas A, Scellato S, Lathia N, et al. Mining user mob-ility features for next place prediction in location-basedservices[C]//Data Mining(ICDM),2012 IEEE 12th In-ternational Conference on. Washington : IEEE, 2012 :1038-1043.
  • 9Ying J J C, Lu E H C. Urban point-of-interest recom-mendation by mining user check-in behaviors [C] // Pro-ceedings of the ACM SIGKDD International Workshop onUrban Computing. New York : ACM, 2012 : 63-70.
  • 10Berjani B,Strufe T. A recommendation system for spotsin location-based online social networks [C] // Proceed-ings of the 4th Workshop on Social Network Systems.New York: ACM, 2011: 4.

共引文献132

同被引文献23

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部