期刊文献+

分块鲁棒主成分分析的撞击坑图像检测识别 被引量:2

A Robust Crater Detection and Recognition Method Based on Blocked Principal Components Analysis
原文传递
导出
摘要 针对遥感图像地形背景复杂的问题,提出分块鲁棒主成分分析的撞击坑候选区域自动提取方法.基于图像分块,采用交替方向乘子算法进行结构稀疏的低秩分解,低秩成分表示冗余相似的背景,稀疏成分代表包含潜在撞击坑的显著区域.针对显著的区域图采用数学形态运算分割获取候选的撞击坑图像,并通过对候选图像进行稀疏表示的分类,识别出真实撞击坑.基于火星和月球图像的实验结果表明,该方法能去除复杂地形和光照的干扰,检测率达到91.7%. Crater is important for analyzing the relative dating of planetary and lunar surfaces. For the complex terrains in remote sensing images,a robust blocked principal components analysis( RPCA) approach was proposed to automatically detect crater candidate regions. An alternating direction multipliers algorithm was presented for RPCA based on the blocked planetary images. The background is modeled as a low-rank matrix,and the salient regions map is represented by structure sparse parts that contain potential craters. The crater candidates are obtained by mathematical morphological operations for the saliency regions map,they are precisely distinguished from falsely detected ones through a sparse representation classifier in feature space. Experiments on the images from Mars and Moon demonstrate show that the accuracy rate of crater recognition can reach up to 91. 7% by effectively eliminating the effects of background and illumination.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第1期63-67,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61210012 61290324)
关键词 撞击坑检测 鲁棒主成分分析 视觉显著性 撞击坑候选区域 crater detection robust principal components analysis visual saliency crater candidate blocks
  • 相关文献

参考文献8

  • 1Jin Shuanggen, Zhang Tengyu. Automatic detection of impact craters on Mars using a modified adaboosting method [J]. Planetary and Space Science, 2014, 99 (9) : 112-117.
  • 2Urbach E R, Stepinski T F. Automatic detection of sub- km craters in high resolution planetary images [ J ]. Plan- etary and Space Science, 2009, 57 (7) : 880-887.
  • 3Candes E J, Li Xiaodong, Ma Yi, et al. Robust principal component analysis[J]. Journal of the ACM, 2011 , 58 (3): 111-1137.
  • 4Yan Junchi, Zhu Mengyuan, Liu Huanxi, et al. Visual saliency detection via sparsity pursuit [ J ]. IEEE Signal Processing Letters, 2010, 17 (8) : 739-742.
  • 5Liu Guangcan, Lin Zhouchen, Yan Shuicheng, et al. Robust recovery of subspace structures by low-rank repre- sentation [ J]. 1EEE Trans. on Pattern Analysis and Ma- chine Intelligence, 2013, 35(1) : 171-184.
  • 6Cai Jianfeng, Candes E, Shen Zuowei. A singular value thresholding algorithm for matrix completion [ J]. SIAM J. Optimization, 2010, 20(4): 1956-1982.
  • 7Yang Junfeng, Zhang Yin. Alternating direction algo- rithms for 1-problems in compressive sensing [ J]. SIAM Journal on Scientific Computing, 2011, 33 ( 1 ) : 250- 278.
  • 8Wagner A, Wright J, Ganesh A, et al. Toward a practi- cal face recognition system: robust alignment and illumi- nation by sparse representation [ J]. IEEE Trans. on Pat- tern Analysis and Machine Intelligence, 2012, 34 (2): 372-386.

同被引文献33

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部